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LECTURE-3 LAWS OF CONVECTION

1 Fundamental Laws
2 Laws Governing Fluid Motion
3 Navier-Stokes Equations
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Fundamental Laws - L3( 1
16)

1 Law of Conservation of Mass ( Transport of Mass )
2 Newton’s Second Law of Motion ( Transport of Momentum )
3 First Law of Thermodynamics ( Transport of Energy )

The first two laws define the fluid motion

The Laws are applied to an infinitesimally small control-volume
located in a moving fluid.
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Modeling a Fluid and its Motion - L3( 2
16)

There are Two approaches

1 PARTICLE APPROACH
2 CONTINUUM APPROACH
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Particle Approach - L3( 3
16)

1 In the Particle Approach , the fluid is assumed to consist of
particles ( molecules, atoms ) and the laws are applied to
study particle motion. Fluid motion is then described by
statistically averaged motion of a group of particles

2 For most applications arising in engineering and the
environment, this approach is too cumbersome because the
significant dimensions ( L ) of the flow ( eg. Radius of a pipe
or Boundary layer thickness ) are considerably bigger than
the Mean Free Path Length ( MFL ) between molecules.

3 The Avogadro’s number specifies that at normal
temperature ( 25 C ) and pressure ( 1 atm ), a gas will
contain 6.022× 1026 molecules per kmol. Thus in air, for
example, there will be ' 2× 1016 molecules per mm3. MFL
is very small indeed.
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Continuum Approach - L3( 4
16)

1 In the Continuum Approach , therefore, statistical averaging
is assumed to have been already performed and the
fundamental laws are applied to portions of fluid ( or,
control-volumes ) that contain a large number of particles.

2 The information lost in averaging must however be
recovered.

3 This is done by invoking some further auxiliary laws and by
empirical specifications of transport properties

1 Viscosity µ , ( Stokes’s Stress-Strain Law )
2 Thermal Conductivity k ( Fourier’s Law )
3 Mass-Diffusivity D ( Fick’s Law )

4 The transport properties are typically determined from
experiments.

() March 7, 2010 6 / 18



Knudsen Number - L3( 5
16)

1 Knudsen Number Kn is defined as

Kn ≡ l
L

where l is MFL and L is characteristic Flow-dimension
2 Continuum Approach is considered valid when Kn < 10−4.
3 In Micro-Channels , Particle Approach becomes necessary

because L is very small.
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Control Volume Definition L3( 6
16)

1 Control Volume ( CV ) is defined as
A region in space across the boundaries of which matter,
energy and momentum may flow and, it is a region within
which source or sink of the same quantities may prevail.
Further, it is a region on which external forces may act.

2 In general, a CV may be large or infinitesimally small.
However, consistent with the idea of a differential in a
continuum , an infinitesimally small CV is considered.

3 The CV is located within a moving fluid. Again, two
approaches are possible:

1 Lagrangian Approach
2 Eulerian Approach

() March 7, 2010 8 / 18



Lagrangian/Eulerian Approach L3( 7
16)

1 In the Lagrangian Approach , the CV is considered to be
moving with the fluid as a whole.

2 In the Eulerian Approach , the CV is assumed fixed in
space and the fluid is assumed to flow through and past the
CV.

3 Except when dealing with certain types of unsteady flows (
waves, for example ), the Eulerian approach is generally
used for its notional simplicity.

4 Measurements made using Stationary Instruments ( Pitot
Tube, Hot-wire, Laser-Doppler ) can be directly compared
with the solutions of differential equations obtained using
the Eulerian approach.

5 We shall prefer Continuum + Eulerian Approach
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Resolution of Total Vectors L3( 8
16)

1 The fundamental laws
define total flows of
mass, momentum and
energy not only in terms
of magnitude but also in
terms of direction .

2 In a general problem of
convection, neither
magnitude nor direction
are known apriori at
different positions in the
flowing fluid.
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The problem of ignorance of
direction is circumvented by
resolving velocity, force and
scalar fluxes in three directions
that define the space.
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Law of Mass Conservation -I L3( 9
16)

Statement
Rate of accumulation of
mass ( Ṁac ) =
Rate of mass in ( Ṁin )
- Rate of mass out (Ṁout )

Ṁac = ∂(ρm ∆V )
∂t

Ṁin = ρm ∆A1 u1 |x1 +
ρm ∆A2 u2 |x2 + ρm ∆A3 u3 |x3

Ṁout = ρm ∆A1 u1 |x1+∆x1 +
ρm ∆A2 u2 |x2+∆x2 +
ρm ∆A3 u3 |x3+∆x3
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ρm = Bulk-Fluid or Mixture
Density
Substitute and Divide each term
by ∆V
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Law of Mass Conservation -II L3( 10
16)

∂ρm

∂t
=

(ρm u1 |x1 − ρm u1 |x1+∆x1)

∆x1
+

(ρm u2 |x2 − ρm u2 |x2∆x2)

∆x2

+
(ρm u3 |x3 − ρm u3 |x3+∆x3)

∆x3

Let ∆x1, ∆x2, ∆x3 → 0

∂ρm

∂t
+

∂(ρm u1)

∂x1
+

∂(ρm u2)

∂x2
+

∂(ρm u3)

∂x3
= 0 (1)

Alternate Non-Conservative Form

∂ρm

∂t
+ u1

∂ρm

∂x1
+ u2

∂ρm

∂x2
+ u3

∂ρm

∂x3
= − ρm

[
∂u1

∂x1
+

∂u2

∂x2
+

∂u3

∂x3

]
D ρm

D t
= −ρm 5 . V (2)
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Newton’s Second Law of Motion - I L3( 11
16)

Statement
For a Given Direction
Rate of accumulation of
momentum ( ˙Momac ) =

Rate of momentum in ( ˙Momin )

- Rate of momentum out (Ṁout )

+ Sum of forces acting on the CV
(Fcv )
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τ - shear stresses ( N / m2 )
σ - normal stresses ( N / m2 )
B - Body forces ( N / kg )
3 equations in 3 directions
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Newton’s Second Law of Motion - II L3( 12
16)

In Direction-1

Momac =
∂(ρm ∆V u1)

∂t
Momin = (ρm ∆A1 u1) u1 |x1 + (ρm ∆A2 u2) u1 |x2

+ (ρm ∆A3 u3) u1 |x3

Momout = (ρm ∆A1 u1) u1 |x1+∆x1 + (ρm ∆A2 u2) u1 |x2+∆x2

+ (ρm ∆A3 u3) u1 |x3+∆x3

Fcv = − (σ1 |x1 − σ1 |x1+∆x1 ) ∆A1

+ (τ21 |x2+∆x2 − τ21 |x2 ) ∆A2

+ (τ31 |x3+∆x3 − τ31 |x3 ) ∆A3

+ ρm B1 ∆V

() March 7, 2010 14 / 18



Newton’s Second Law of Motion - III L3( 13
16)

In Direction-1 Substitute, Divide each term by ∆V and let
∆x1, ∆x2, ∆x3 → 0

∂(ρm u1)

∂t
+

∂(ρm u1 u1)

∂x1
+

∂(ρm u2 u1)

∂x2
+

∂(ρm u3 u1)

∂x3

=
∂(σ1)

∂x1
+

∂(τ21)

∂x2
+

∂(τ31)

∂x3
+ ρm B1 (3)

This is Momentum equation in X1 direction
LHS ≡ Net Rate of Change of Momentum in X1 direction
RHS ≡ Net Forces in X1 direction

Exercise: Similar procedure in Directions 2 and 3.
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Tensor Notation L3( 14
16)

Mass Conservation equation

∂(ρm)

∂t
+

∂(ρm uj)

∂xj
= 0 (4)

Momentum equation in Xi direction ( 3 equations )

∂(ρm ui)

∂t
+

∂(ρm uj ui)

∂xj
=

∂

∂xi
[σiδij ] +

∂

∂xj
[τji (1− δij)] + ρm Bi (5)

for i = 1,2,3 and j = 1,2,3 ( cyclic ). δij = kronecker delta
Closure Problem: 4 equations and 12 unknowns
ui ( 3 ), σi ( 3 ), τij ( 6 )
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Stokes’s Stress-Strain Laws L3( 15
16)

1 Shear Stress

τij = µ

[
∂ui

∂xj
+

∂uj

∂xi

]
(6)

2 Therefore, τij = τji

( Complementary Stress )
3 Normal Stress ( Tensile )

σi = − p + 2 µ
∂ui

∂xi
(7)

= − p + τii (8)
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Now, we have 4 equations
and 4 unknowns:
ui ( 3 ) and p.
Fluid Viscosity µ must be
supplied. See next slide

() March 7, 2010 17 / 18



Navier - Stokes Equations L3( 16
16)

Mass Conservation equation

∂(ρm)

∂t
+

∂(ρm uj)

∂xj
= 0 (9)

Momentum equation in Xi direction ( 3 equations )

∂(ρm ui)

∂t
+

∂(ρm uj ui)

∂xj
= − ∂p

∂xi
+

∂

∂xj

[
µ

∂ui

∂xj

]
+ ρm Bi +

∂

∂xj

[
µ

∂uj

∂xi

]
(10)

These are known as Navier - Stokes Equations . They describe
fluid motion completely.
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