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LECTURE-20 SUPERPOSITION
TECHNIQUE

1 Effect of Axially varying thermal boundary condition on
developing heat transfer Pr >> 1

2 Axial variation of Tw

3 Axial variation of qw
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Axial Variation of Tw - L20( 1
12)

Our thermal entry length solution for Pr >>1 may be viewed as
solution to a step-function (Tw − Ti) at x = x0 . Thus, for x ≥ x0

T − Ti = [1− θ (x∗ − x∗0 , y
∗)] (Tw − Ti) → θ =

T − Tw

Ti − Tw

y 2b

Ti
Tw

0X

Ti
X

Therefore, for arbitrary variation of Tw , we have

T − Ti =

∫ x∗

o
[1− θ (x∗ − x∗0 , y

∗)]
dTw

dx∗0
dx∗0

+
NK∑
k=1

[
1− θ (x∗ − x∗0,k , y

∗)
]

∆(Tw − Ti)k
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Further Development - 1 - L20( 2
12)

Therefore, the wall heat flux is evaluated as

qw (x∗) = k
∂T
∂y
|y=b =

k
b
∂T
∂y∗
|y∗=1

= − k
b

[∫ x∗

o
θ
′

(x∗ − x∗0 ,1)
dTw

dx∗0
dx∗0

+
NK∑
k=1

θ
′

(x∗ − x∗0,k ,1) ∆(Tw − Ti)k

]

But, we know that ( see lecture 19 )

θ
′

(1) = −
∞∑

n=0

An exp(− 8
3
λ2

n x∗)→ An = − Cn Y
′

n (1)
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Further Development - 2 - L20( 3
12)

Therefore, substitution gives

qw (x∗) =
k
b

[∫ x∗

o

∞∑
n=0

An exp
{
− 8

3
λ2

n (x∗ − x∗0 )

}
dTw

dx∗0
dx∗0

+
NK∑
k=1

∞∑
n=0

An exp
{
− 8

3
λ2

n (x∗ − x∗0,k )

}
∆(Tw − Ti)k

]

Tb − Ti =
4b
k

∫ x∗

0
qw (x∗) dx∗

Nux∗ =
hx (4b)

k
=

qw (x∗)
(Tw − Tb)x∗

× 4b
k
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A Problem - L20( 4
12)

Let Tw − Ti = (A + B x∗) → dTw/dx∗0 = B . Then

qw (x∗) =
k
b

[
3B
8

∞∑
n=0

An

λ2
n

{
1− exp(− 8

3
λ2

n x∗)
}

+ A
∞∑

n=0

An exp(− 8
3
λ2

n x∗)

]
(note x0 = 0)

Tw − Tb =
9B
16

∞∑
n=0

An

λ4
n

{
1− exp(− 8

3
λ2

n x∗)
}

+
3A
2

∞∑
n=0

An exp(− 8
3
λ2

n x∗)

Nux∗ =
qw 4b

k(Tw − Tb)
as x →∞,Nux =

8
∑∞

0 An/λ
2
n

3
∑∞

0 An/λ4
n

= 8.235

() March 26, 2012 6 / 14



Results for A = 1 and B = -5 - L20( 5
12)

x∗ Tw Tb qw Nux

0 1.0 0 8.7 35
.05 .75 .32 .73 6.8
.10 .50 .39 .1 3.7
.11 .45 .4 0 .04
.12 .40 .4 -.1 -66
.15 .25 .37 -0.32 12.5
.17 .15 .34 -0.45 9.7
.19 .05 .30 -0.56 9.2
.20 0 .27 -.62 9.1

Strange things happen. Tw reduces to Ti = 0 at x∗ = 0.2. Tb

increases from 0 till x∗ = 0.11 but then falls. qw > 0 for
x∗ ≤ 0.11 but then turns negative resulting in negative Nu which
then again rises to Nu = 18 at x∗ = 0.13 and then again falls.
For x∗ > 0.12, Tb > Tw .
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Axial Variation of qw - L20( 6
12)

From lecture 19, we know that the temperature response for
step-jump in qw at x∗ = x∗0 is given by

Ψ =
T − Ti

qw b/k

=
3
4

(y∗
2 − y∗4

6
) + 4 x∗ − 39

280

+
∞∑

n=1

Cn Yn (y∗) exp (−8
3
λ2

n x∗)

Ψw =
17
35

+ 4 x∗ +
∞∑

n=1

Bn exp (−8
3
λ2

n x∗)

∂Ψ

∂x∗
= 4− 8

3

∞∑
n=1

Bn λ
2
n exp (−8

3
λ2

n x∗)

where Bn = Cn Yn (1)
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Further Development - 1 - L20( 7
12)

Here, we consider only continuous variation of qw (x∗) . Then,
response of bulk and wall temperature will be

Tw − Ti =
b
k

∫ x∗

0

∂Ψ

∂x∗0
qw (x∗0 ) dx∗0

=
b
k

∫ x∗

0

[
4− 8

3

∞∑
n=1

Bn λ
2
n exp (−8

3
λ2

n x∗)

]
qw (x∗0 ) dx∗0

Tb − Ti =
4b
k

∫ x∗

0
qw (x∗0 ) dx∗0

Nux∗ =
qw (x∗)

Tw − Tb
× 4b

k
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A Problem - L20( 8
12)

In nuclear reactors, the fuel elements ( rods or plates ) generate
sinusoidally varying heat flux along the cooling channels. Thus,
let

qw

qw ,max
= sin (

π x
L

)

where L is the length of the cooling channel. Then

Tb − Ti

(qw ,max b/k)
=

∫ x∗

0
4 sin (

π x∗0
L∗

) dx∗0

= (
4 L∗

π
)

[
1− cos (

π x∗

L∗
)

]
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Problem Contd. - 1 - L20( 9
12)

Tw − Ti

(qw ,max b/k)
=

∫ x∗

0
4 sin (

π x∗0
L∗

) dx∗0

− 8
3

∫ x∗

0

∞∑
n=1

Bn λ
2
n exp (−8

3
λ2

n x∗) sin (
π x∗0
L∗

) dx∗0

= (
4 L∗

π
)

[
1− cos (

π x∗

L∗
)

]
+

∞∑
n=1

[
Bn

1 + {(3 π)/(8 λ2
n L∗)}2

]

×
[
sin (

π x∗

L∗
) exp (−8

3
λ2

n x∗)

+
3 π
8 L∗

{
cos (

π x∗

L∗
) exp (−8

3
λ2

n x∗)− 1
}]
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Problem Contd. - 2 - L20(10
12)

From the results of last two slides

Tw − Tb

(qw ,max b/k)
=

∞∑
n=1

[
Bn

1 + {(3 π)/(8 λ2
n L∗)}2

]

×
[
sin (

π x∗

L∗
) exp (−8

3
λ2

n x∗)

+
3 π
8 L∗

{
cos (

π x∗

L∗
) exp (−8

3
λ2

n x∗)− 1
}]

Nux =
4 sin (π x∗/L∗)

(Tw − Tb)/(qw ,max b/k)

Values of λn and Bn are given in lecture 19.

() March 26, 2012 12 / 14



Results - L20(11
12)

qw = qw ,max sin (π x∗/L∗)
qw ,max = 1
x/L qw Tb Tw

Nux
4

.01 .031 6e-3 .35 .09

.05 .156 .016 .525 .307

.10 .31 .062 .595 .580

.25 .707 .373 .908 1.32

.50 1.0 1.27 1.81 1.87

.70 .809 2.02 2.56 1.51

.80 .588 2.30 2.84 1.10

.90 .309 2.48 3.02 .577

.95 .156 2.53 3.06 .292
1.0 0.0 2.55 3.04 0.0

Note that Nux ,max = 7.48 occurs
at x/L = 0.5 where qw ,max

occurs, but Tw ,max and Tb,max

occur at x/L = 0.95. This
problem is of relevance to
Nuclear reactors.
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Summary - L20(12
12)

1 We have considered fully developed heat transfer in circular
tube and annuli and parallel plates.

2 We have also presented a general method for flow and heat
transfer in singly connected ducts of arbitrary cross-section
and arbitrary variations of Tw ,qw and hw

3 We presented developing heat transfer solutions for circular
tube and parallel plates for qw (x) = const and Tw (x) =
const for the entire range of Prandtl numbers.

4 Finally, we extrapolated these solutions to situations
involving arbitrary axial variations of heat flux and wall
temperature. However, for complex ducts, it is best to adopt
CFD solutions

5 This completes discussion on Laminar duct flow heat
transfer.
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