ME-662 CONVECTIVE HEAT AND MASS TRANSFER

A. W. Date
Mechanical Engineering Department
Indian Institute of Technology, Bombay
Mumbai - 400076
India

LECTURE-19 LAMINAR DEVELOPING HEAT TRANSFER IN DUCTS

LECTURE-19 LAMINAR DEVELOPING HEAT TRANSFER

- Importance of Prandtl Number
- $\ \,$ Simultaneous Development of Flow and Heat Transfer for Pr \simeq 1
- Fully Developed Flow Thermal Entry Length for Pr >> 1
- Slug Flow Thermal Entry Length for Pr << 1</p>

Importance of Pr - L19($\frac{1}{20}$)

- In the entrance length of a duct, the velocity and temperature boundary layers develop simultaneously in the presence of heat transfer.
- ho For $Pr \simeq 1$ the two layers can be expected to develop at almost the same rate.
- Mowever, for Pr >> 1 (Oils), the temperature boundary layers will develop at a very slow rate, so much so that the velocity profile will already be fully-developed over greater part of thermal development.
- Onversely, for Pr << 1 (Liquid Metals), the temperature boundary layer will develop so rapidly that the velocity profile may be assumed to be almost uniform = \overline{u} .

Simultaneous Development - L19($\frac{2}{20}$)

Consider entry region of flow between parallel plates 2b apart. Then, the governing equations are

$$\frac{\partial u^*}{\partial x^*} + \frac{\partial v^*}{\partial y^*} = 0$$

$$\frac{\partial (u^* u^*)}{\partial x^*} + \frac{\partial (u^* v^*)}{\partial y^*} = -\frac{d}{d} \frac{p^*}{x^*} + \frac{1}{Re} \left[\frac{\partial^2 u^*}{\partial y^{*^2}} \right]$$

$$\frac{\partial (u^* T)}{\partial x^*} + \frac{\partial (v^* T)}{\partial y^*} = \frac{1}{Re Pr} \left[\frac{\partial^2 T}{\partial y^{*^2}} + \frac{\partial^2 T}{\partial x^{*^2}} \right]$$
where $u^* = \frac{u}{\overline{u}}, v^* = \frac{v}{\overline{u}}, p^* = \frac{p}{\rho \overline{u^2}}$ $x^* = \frac{x}{D_h}, y^* = \frac{y}{D_h}$

$$Re = \frac{\overline{u}D_h}{\nu} \qquad D_h = 4 b$$
For $RePr \ge 100$ $\frac{\partial^2 T}{\partial x^{*^2}} < < \frac{\partial^2 T}{\partial y^{*^2}}$

Velocity Solution - L19($\frac{3}{20}$)

From Lecture 14,

$$u' = u^* + \frac{Re}{\beta^2} \frac{d p^*}{d x^*}$$

$$= C_1 \exp(\beta y^*) + C_2 \exp(-\beta y^*)$$

$$C_1 = \frac{(Re/\beta^2) (d p^* / d x^*)}{1 + exp(\beta/2)}$$

$$C_2 = C_1 \exp(\beta/2)$$

$$v^* = -\frac{d}{dx^*} \left[\int_0^{y^*} u^* dy^* \right]$$

Therefore, the temperature Eqn can be solved by method of linearisation. The method is very cumbersome¹. Hence only solutions are given.

¹Heaton H S, Reynolds W C and Kays W M, Int Jnl H & M Transfer, vol 7, p 763, (1964)

Parallel Plates - q_{top} = const - - L19($\frac{4}{20}$)

Top wall receives axially uniform heat flux q_h . Bottom wall is insulated. $x^+ = x^*/(RePr)$, $\theta = (T - T_i)/(q_h D_h/k)$, $\theta_h = 2 x^+$, $Nu_h = h_{h,x} D_h/k = 1./\Delta\theta \rightarrow \Delta\theta = (\theta_w - \theta_h)$

parallel plates								
Pr	X ⁺	.001	.0025	.005	.01	.05	.10	∞
	Nu _h	15.56	11.46	9.2	7.49	5.55	5.4	5.39
10	$\Delta \theta_h$.064	.087	.11	.134	.18	.185	.186
	$\Delta heta_{uh}$	002	005	01	02	059	064	0643
	Nu _h	18.5	12.6	9.62	7.68	5.55	5.4	5.39
.7	$\Delta \theta_h$.054	.079	.104	.13	.18	.185	.186
	$\Delta heta_{uh}$	002	005	01	02	059	064	0643
	Nu _h	24.2	15.8	11.7	8.80	5.77	5.53	5.39
.01	$\Delta \theta_h$.041	.063	.086	.114	.173	.181	.186
	$\Delta heta_{uh}$	002	005	01	02	066	068	064
	θ_{b}	.002	.005	.01	.02	.10	.2	∞

Circular Tube - q_w = const - L19($\frac{5}{20}$)

 u^* and v^* from Langhaar Soln - Uniform heat flux q_w - $\theta_b = 4 x^+$, $Nu_x = h_x D_h/k = 1./\Delta\theta \rightarrow \Delta\theta = (\theta_w - \theta_b)$

	× × · · · · · · · · · · · · · · · · · ·								
	Circular Tube								
Pr	X ⁺	.001	.0025	.005	.01	.05	.10	∞	
	Nu _x	14.34	9.93	7.87	6.32	4.51	4.38	4.36	
10	$\Delta \theta$.0697	.1007	.1271	.1582	.222	.228	.229	
	Nux	17.84	12.08	9.12	7.14	4.72	4.41	4.36	
.7	$\Delta \theta$.0561	.0828	.1096	.1401	.212	.227	.229	
	Nux	24.2	16.	12.	9.1	6.08	5.73	4.36	
.01	$\Delta \theta$.0413	.0625	.0833	.11	.165	.175	.229	
	θ_{b}	.004	.010	.020	.040	.20	.4	∞	

For both parallel plates (pp) and circular tube (ct), thermal development length is $L_h/D_h \simeq 0.1 \times Re\ Pr$. This is typical for ducts of nearly all cross-sections. Recall that $L_{flow}/D_h|_{pp} \simeq 0.01 \times Re$ and $L_{flow}/D_h|_{ct} \simeq 0.05 \times Re$.

Parallel Plates ($T_w = \text{const}$) - L19($\frac{6}{20}$)

Here, both plates are held at constant temperature.

Pr = 5.0			<i>Pr</i> = 2.5			Pr = 0.7		
\mathbf{X}^+	Nu_x	θ_{b}	\mathbf{X}^+	Nux	θ_{b}	\mathbf{X}^{+}	Nux	θ_{b}
1e-4	40.9	.946	1e-4	56.1	.952	3.6e-4	38.9	.897
3e-4	22.1	.925	2e-4	30.9	.918	7.1e-4	18.4	.840
7e-4	15.2	.905	6e-4	16.8	.888	2.1e-3	11.3	.776
.0012	12.2	.88	.0014	12.1	.857	5e-3	9.05	.705
.003	9.4	.813	.004	8.95	.771	8.6e-3	8.17	.616
.0065	8.2	.715	.006	8.29	.714	.0143	7.79	.516
.009	7.9	.658	.009	7.91	.643	.0321	7.59	.295
.012	7.7	.594	.013	7.71	.565	.0643	7.57	.125
.027	7.6	.374	.024	7.59	.399	.086	7.57	.071
∞	7.54	0.0	∞	7.54	0.0	∞	7.54	0.0

Circular Tube ($T_w = \text{const}$) - L19($\frac{7}{20}$)

	Pr = 0.7		<i>Pr</i> = 2.0		Pr = 5.0	
\mathbf{X}^{+}	Nu _x	Nu _m	Nux	Num	Nu _x	Nu _m
.001	16.8	30.6	14.8	25.2	13.5	22.1
.002	12.6	22.1	11.4	19.1	10.6	16.8
.004	9.6	16.7	8.8	14.4	8.2	12.9
.006	8.25	14.1	7.5	12.4	7.1	11.0
.01	6.8	11.3	6.2	10.2	5.9	9.2
.02	5.3	8.7	5.0	7.8	4.7	7.1
.05	4.2	6.1	4.1	5.6	3.9	5.1
∞	3.66	3.66	3.66	3.66	3.66	3.66

$$Nu_m = \frac{1}{x} \int_0^x Nu_x dx$$

Thermal Entry Length - L19($\frac{8}{20}$)

For Pr>>1, over greater part of thermal development, the velocity profile can assumed to be fully developed. Hence, For Parallel Plates

$$u_{fd} \frac{\partial T}{\partial x} = \alpha \frac{\partial^2 T}{\partial y^2}$$

$$\frac{u_{fd}}{\overline{u}} = \frac{3}{2} \left\{ 1 - (\frac{y}{b})^2 \right\}$$

For Circular Tube

$$u_{fd} \frac{\partial T}{\partial x} = \frac{\alpha}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right)$$
$$\frac{u_{fd}}{\overline{u}} = 2 \left\{ 1 - \left(\frac{r}{R} \right)^2 \right\}$$

BCs at y,r = 0 (symmetry) and y=b and r=R (wall) must be given. Initial condition: $T = T_i$ at x = 0.

March 26, 2012

Parallel Plates - $T_w = \text{const} - \text{L19}(\frac{9}{20})$

Governing Eqn

$$\frac{3}{8} (1 - y^{*2}) \frac{\partial \theta}{\partial x^{*}} = \frac{\partial^{2} \theta}{\partial y^{*2}}$$

$$\theta = \frac{T - T_{w}}{T_{i} - T_{w}} , \quad x^{*} = \frac{(x/b)}{Re Pr}, \quad y^{*} = \frac{y}{b}$$

$$BC \theta (x^{*}, 1) = 0, \quad \frac{\partial \theta}{\partial y^{*}} |_{x^{*}, 0} = 0$$

$$IC \theta (0, y^{*}) = 1.0$$

This is known as the Graetz Problem. It is solved by the Method of separation of variables.

11/22

March 26, 2012

Soln - 1 - $T_w = \text{const} - \text{L19}(\frac{10}{20})$

Let $\theta = X(x^*) \times Y(y^*)$. Then, substitution gives two ODEs

$$X' + \frac{8}{3} \lambda^2 X = 0$$
 with $X(0) = 1$
 $Y'' + \lambda^2 (1 - y^{*2}) Y = 0$ with $Y(1) = Y'(0) = 0$

The soln for this Sturm-Louville Eqn-set is

$$\theta(x^*, y^*) = \sum_{n=0}^{\infty} C_n \exp(-\frac{8}{3} \lambda_n^2 x^*) \times Y_n(y^*)$$

$$C_n = \frac{\int_0^1 (1 - y^{*2}) Y_n dy^*}{\int_0^1 (1 - y^{*2}) Y_n^2 dy^*} = \frac{-2/\lambda_n}{(d Y_n/d \lambda_n)_{y^*=1}}$$

 λ_n are obtained by integrating Y-Eqn by shooting method for various values of λ . Correct values of λ_n correspond to Y(1)=0.

March 26, 2012 12

Soln - 2 - T_w = const - L19($\frac{11}{20}$)

$$Nu_{x} = \frac{h(4b)}{k} = -4\left(\frac{\theta'(1)}{\theta_{b}}\right)$$

$$\theta_{b} = \frac{3}{2} \int_{0}^{1} \theta(1 - y^{*2}) dy^{*}$$

$$= \frac{3}{2} \sum_{n=0}^{\infty} \frac{A_{n}}{\lambda_{n}^{2}} exp(-\frac{8}{3} \lambda_{n}^{2} x^{*})$$

$$\theta'(1) = -\sum_{n=0}^{\infty} A_{n} exp(-\frac{8}{3} \lambda_{n}^{2} x^{*}) \to A_{n} = -C_{n} Y'_{n}(1)$$

$$Nu_{x} = \frac{8}{3} \left[\frac{\sum_{n=0}^{\infty} A_{n} exp(-\frac{8}{3} \lambda_{n}^{2} x^{*})}{\sum_{n=0}^{\infty} (A_{n}/\lambda_{n}^{2}) exp(-\frac{8}{3} \lambda_{n}^{2} x^{*})} \right]$$

$$Nu_{m} = \frac{1}{x^{*}} \int_{0}^{x^{*}} Nu_{x} dx^{*} = -\frac{\ln \theta_{b}}{x^{*}}$$

March 26, 2012 13 / 22

Soln - 3 - T_w = const - L19($\frac{12}{20}$)

Eigen Values and Constants

n	λ_n	<i>C</i> _n /2	$A_n/2$
0	1.6816	0.6002	0.85808
1	5.6696	-0.1503	0.56946
2	9.6682	0.08041	0.47606
3	13.6677	-0.05161	0.42397
4	17.6674	0.03982	0.3891
<i>n</i> > 4	4n + 5/3	$(-1)^n 1.1356 \lambda_n$	$1.0128\lambda_n^{-1/3}$

These values also apply to circular tube²

²Brown G. M. AlChE, vol 6, p 179-183, (1960)

Soln - 4 - $T_w = \text{const} - \text{L19}(\frac{13}{20})$

x*/4	$\theta_{\mathcal{b}}$	Nu_x	Nu _m
0	1.0	∞	∞
0.0001	0.9842	26.56	39.736
0.0005	0.95425	15.83	23.416
0.001	0.92774	12.822	18.752
0.003	0.85137	9.5132	13.409
0.005	0.79258	8.5166	11.623
0.01	0.67503	7.7405	9.8249
0.02	0.49804	7.5495	8.7133
0.05	0.20148	7.5407	8.0103
0.10	0.04459	7.5407	7.7755
0.20	0.00218	7.5407	7.6581
∞	0.0	7.5407	7.5407

$$Nu_{fd} = (8/3) \times \lambda_0^2 = 7.5407$$

March 26, 2012

Parallel Plates - q_w = const - L19($\frac{14}{20}$)

In this case, we define

$$\Psi(x,y) = \frac{T(x,y) - T_{fd}(x,y)}{q_w b / k} + \frac{T_{fd}(x,y) - T_i}{q_w b / k}$$

$$= \theta(x,y) + \theta_{fd}(x,y)$$

$$\frac{d \theta_{fd}}{d x^*} = 4 \rightarrow x^* = \frac{(x/b)}{Re Pr}$$

Then, we have two equations.

$$\frac{3}{2} (1 - y^{*^2}) = \frac{\partial^2 \theta_{fd}}{\partial y^{*^2}} \quad \text{(fully developed part)}$$

$$\frac{3}{8} (1 - y^{*^2}) \frac{\partial \theta}{\partial x^*} = \frac{\partial^2 \theta}{\partial y^{*^2}} \quad \text{(developing part)}$$

March 26, 2012

Soln - 1 - q_w = const - L19($\frac{15}{20}$)

Fully Developed part - Integration gives

$$\theta_{td} = \frac{3}{4} (y^{*2} - \frac{y^{*4}}{6}) + 4 x^{*} - \frac{39}{280}$$

Developing part -

$$\theta = \sum_{n=1}^{\infty} C_n Y_n(y^*) \exp\left(-\frac{8}{3} \lambda_n^2 x^*\right)$$

$$C_n = -\frac{\int_0^1 \theta_{fd,(x^*=0)} (1 - y^{*2}) Y_n(y^*) dy^*}{\int_0^1 (1 - y^{*2}) Y_n^2(y^*) dy^*}$$

March 26, 2012 17 / 22

Soln - 2 - q_w = const - L19($\frac{16}{20}$) Complete solution

Soln - 3 - $q_w = \text{const} - \text{L19}(\frac{17}{20})$

	Eigen va	lues	Nu values			
n	λ_n	- <i>B</i> _n	x*/4	Nu _x	Nu _m	
1	4.2872	0.2222	0.0001	32.153	48.11	
2	8.3037	0.07253	0.0005	19.113	28.33	
3	12.3106	0.03737	0.001	15.427	22.65	
4	16.3145	0.02328	0.005	9.9878	13.89	
5	20.3171	0.01611	0.01	8.8031	11.58	
6	24.319	0.01192	0.03	8.2458	9.446	
7	28.3203	0.00923	0.05	8.2355	8.963	
8	32.3214	0.0074	0.10	8.2353	8.599	
9	36.3223	0.00609	0.20	8.2353	8.417	
10	40.3231	0.00511	∞	8.2353	8.2353	

For n > 10, $\lambda_n = 4 n + 1/3$ and - $B_n = 2.401006 \lambda_n^{-5/3}$

→□▶→□▶→■▶→■ 900

Thermal Entry Length - L19($\frac{18}{20}$)

For Pr << 1, over greater part of thermal development, the velocity profile hardly changes. Hence, For Parallel Plates the governing equation is

$$\overline{u}\,\frac{\partial\,T}{\partial x} = \alpha\,\frac{\partial^2T}{\partial y^2}$$

or

$$\frac{1}{4} \frac{\partial \theta}{\partial x^*} = \frac{\partial^2 \theta}{\partial y^{*^2}} \rightarrow \theta = \frac{T - T_i}{T_w - T_i} \rightarrow x^* = \frac{(x/b)}{Re \, Pr}$$

where it is assumed that RePr > 100. Then, this parabolic equation can be solved by method of separation of variables using the appropriate boundary conditions.

March 26, 2012 20 / 22

Parallel Plates - Pr << 1 - L19($\frac{19}{20}$)

For $T_w = \text{const}$, the soln is

$$\theta = \frac{4}{\pi} \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)} \cos \left\{ \frac{(2n+1)\pi y^*}{2} \right\}$$

$$\times \exp \left(-\pi^2 (2n+1)^2 x^* \right)$$

$$\theta_b = \int_0^1 \theta \, dy^* = \frac{8}{\pi^2} \sum_{n=0}^{\infty} \frac{\exp \left(-\pi^2 (2n+1)^2 x^* \right)}{(2n+1)^2}$$

$$\frac{\partial \theta}{\partial y^*} |_{y^*=1} = -2 \sum_{n=0}^{\infty} \exp \left(-\pi^2 (2n+1)^2 x^* \right)$$

$$Nu_x = -4 \left(\frac{\partial \theta}{\partial y^*} |_{y^*=1} \right) \times \theta_b^{-1}$$
For large x^*
$$Nu_{fd} \to \pi^2 = 9.87 > 7.545 \text{ (for Pr} >> 1)}$$

Parallel Plates - Pr << 1 - L19($\frac{20}{20}$)

For $q_w = \text{const}$, the soln is

$$\begin{split} \Psi &= \theta + \theta_{fd} \\ &= -\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos (n \pi y^*) \exp (-4 \pi^2 n^2 x^*) \\ &+ \frac{y^{*^2}}{2} + 4 x^* - \frac{1}{6} \\ \Psi_w &= -\frac{2}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} \exp (-4 \pi^2 n^2 x^*) + 4 x^* + \frac{1}{3} \\ \Psi_b &= 4 x^* \\ Nu_x &= 12 \left\{ 1 - \frac{6}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} \exp (-4 \pi^2 n^2 x^*) \right\}^{-1} \end{split}$$

For large x^* $Nu_{fd} \rightarrow 12 > 8.235$ (for Pr >> 1)