Linear Programming and its Extensions (NPTEL) Assignment

1. Transform the given un-capacitated min-cost flow problem to a transportation problem.

2. Consider the min-cost flow problem given below with positive lower bounds on arc flows. Transform it to a min-cost flow problem with '0' lower bounds

Since $\ell_{45}=1$, i.e. at least one unit of flow should be on arc (4, 5), we make the transformation $y_{35}=x_{35}-1$. Then $y_{35}=0$ when $x_{35}=1$ and $y_{35}\geq 0$. The transformation will change $b_4 \rightarrow -4$ and $b_5=2+1=3$. Similarly make the transformation for arc (1,2) to reduce the problem to a min-cost flow problem with '0' lower bounds.

3. Following min-cost flow problem was worked out in the 29th lecture.

The network given below depicts an optimal solution.

Post-optimality Analysis.

- (i) By how much can c_{12} and c_{35} change one at a time so that the current solution remains optimal. Remember, for arc (1,2), $\bar{c}_{12} = c_{12} + \Delta_{12} w_1 + w_2 \le 0$ and for arc (3,5), $\bar{c}_{35} = c_{35} + \Delta_{35} w_3 + w_5 \ge 0$
- (ii) Find an interval for Δ_{25} such that the current solution will remain optimal when $c_{25} \rightarrow c_{25} + \Delta_{25}$
- (iii) Suppose $b_1 \rightarrow b_1 + \delta$, i.e. $\hat{b_1} = 25 + \delta$ and $\hat{b_4} \rightarrow -\delta$, i.e. $\hat{b_4} = -\delta$. Find an interval for δ such that the current solution remains optimal.
- (iv) Consider $\hat{b_1} = 25 + \delta$ and $\hat{b_2} = -\delta$. In this case also determine an interval for δ such that the current solution remains optimal.
- (v) Show one iteration of the dual-simplex algorithm when δ exceeds either of its limits in (iv).
- (vi) Suppose $u_{12} \rightarrow 20$. Since $\bar{c}_{12} < 0$, increase of flow on arc (1,2) will improve the cost. Thus the current solution may no longer be optimal. Obtain the new optimal solution.
 - Arc (2,5) is a basic arc at its upper bound. Suppose u_{25} decreases to 10. The current solution is no larger feasible. Obtain an optimum solution using the dual-simplex pivot on the current optimum solution.