Linear Programming and its Extensions (NPTEL) Assignment 1. Consider the following product mix-problem: *Minimise*: $$Z = -2x_1 - 3x_2 - 2x_3 - x_4$$ Subject to: x_5 , x_6 , x_7 are the slack variables corresponding to the three inequality constraints. (x_1, x_3, x_2) constitute the optimal basic variables and let B denote the corresponding basis. $$B^{-1} = \begin{bmatrix} -1/5 & 3/5 & 0 \\ -1/10 & 1/20 & 1/4 \\ 2/5 & -1/5 & 0 \end{bmatrix}.$$ Answer the following questions giving reasons for your answers. - (a) If you are given the choice of increasing the availability of only one of the materials by <u>one</u> unit, which one will you choose? Why? - (b) What is an optimum solution if availability of b_2 is increased by 31 units? - (c) If total of 10 units of 3rd raw material can be made available, i.e. 4 units more, what is the maximum amount you can afford to pay for it? - (d) Obtain the interval for c_1 such that the current solution remains optimal for all values of c_1 in that interval. Do the same for c_2 . - (e) Let x_8 denote the number of a new product that the company has the option to produce at Rs.10/- per unit. In the objective function the cost coefficient will be -10 since we are minimizing the objective function. Let $A_8^t = (20, 20-3\lambda, -24+\frac{\lambda}{5})$. At what value of λ will it become profitable to manufacture the new product? - (f) For what range of values of θ will the current solution remain optimal, if the input-output coefficient a_{22} is changed to $a_{22} + \theta$? ## 2. Consider the parametric RHS problem: Min $$Z = C^t x$$ Subject to $Ax = b + \lambda b^*$, $x \ge 0$. Suppose the problem is known to be infeasible for $\lambda = \lambda_0$. Prove that the problem will be infeasible for either all values of $\lambda \leq \lambda_0$ or for all values of $\lambda \geq \lambda_0$. ## 3. Consider the following parametric LPP in tableau form: | x_1 | x_2 | x_3 | x_4 | x_5 | RHS | | |-------|-------|-------|-------|-------|-----|-------| | 3 | 4 | 7 | -1 | 1 | 0 | C | | 0 | 8 | 0 | 0 | -2 | 0 | C^* | | 5 | -4 | 14 | -2 | 1 | 16 | | | 1 | -1 | 5 | -1 | 1 | 8 | | Objection function is to be minimized. Solve the problem for all values of the parameter μ , starting with the bfs solution consisting of the basic variables (x_1, x_5) . Show that the corresponding basis (A_1, A_5) is not optimal for any value of μ . Proceed from there to solve for all values of μ .