Linear Programming and its Extensions (NPTEL) Assignment

1. Consider the following product mix-problem:

Minimise:
$$Z = -2x_1 - 3x_2 - 2x_3 - x_4$$

Subject to:

 x_5 , x_6 , x_7 are the slack variables corresponding to the three inequality constraints. (x_1, x_3, x_2) constitute the optimal basic variables and let B denote the corresponding basis.

$$B^{-1} = \begin{bmatrix} -1/5 & 3/5 & 0 \\ -1/10 & 1/20 & 1/4 \\ 2/5 & -1/5 & 0 \end{bmatrix}.$$

Answer the following questions giving reasons for your answers.

- (a) If you are given the choice of increasing the availability of only one of the materials by <u>one</u> unit, which one will you choose? Why?
- (b) What is an optimum solution if availability of b_2 is increased by 31 units?
- (c) If total of 10 units of 3rd raw material can be made available, i.e. 4 units more, what is the maximum amount you can afford to pay for it?
- (d) Obtain the interval for c_1 such that the current solution remains optimal for all values of c_1 in that interval. Do the same for c_2 .
- (e) Let x_8 denote the number of a new product that the company has the option to produce at Rs.10/- per unit. In the objective function the cost coefficient will be -10 since we are minimizing the objective function. Let $A_8^t = (20, 20-3\lambda, -24+\frac{\lambda}{5})$. At what value of λ will it become profitable to manufacture the new product?
- (f) For what range of values of θ will the current solution remain optimal, if the input-output coefficient a_{22} is changed to $a_{22} + \theta$?

2. Consider the parametric RHS problem:

Min
$$Z = C^t x$$

Subject to $Ax = b + \lambda b^*$, $x \ge 0$.

Suppose the problem is known to be infeasible for $\lambda = \lambda_0$. Prove that the problem will be infeasible for either all values of $\lambda \leq \lambda_0$ or for all values of $\lambda \geq \lambda_0$.

3. Consider the following parametric LPP in tableau form:

x_1	x_2	x_3	x_4	x_5	RHS	
3	4	7	-1	1	0	C
0	8	0	0	-2	0	C^*
5	-4	14	-2	1	16	
1	-1	5	-1	1	8	

Objection function is to be minimized. Solve the problem for all values of the parameter μ , starting with the bfs solution consisting of the basic variables (x_1, x_5) . Show that the corresponding basis (A_1, A_5) is not optimal for any value of μ . Proceed from there to solve for all values of μ .