

APPLIED MULTIVARIATE ANALYSIS FREQUENTLY ASKED QUESTIONS

AMIT MITRA & SHARMISHTHA MITRA

DEPARTMENT OF MATHEMATICS & STATISTICS, INDIAN INSTITUTE OF TECHNOLOGY KANPUR.

[1] The variance covariance matrix of a 3-dimensional random vector $\mathbf{X} = (X_1, X_2, X_3)^T$ is given by

$$\Sigma = \begin{pmatrix} 25 & -2 & 4 \\ -2 & 4 & 1 \\ 4 & 1 & 9 \end{pmatrix}$$

- (a) Find the correlation matrix.
- **(b)** Find the correlation between X_1 and $\frac{X_2}{2} + \frac{X_3}{2}$.
- [2] Suppose $X = (X_1, ..., X_P)$ is a p-dimensional random vector with $E(X) = \mu$ and $Cov(X) = \Sigma$. Find the covariance matrix of the random vector $Z = (c_1 X, ..., c_k X)$; where $c_j \in \Re^P$ are vectors of constants.
- [3] Show that $|S| = s_{11}....s_{pp} |R|$, where S is the sample variance covariance matrix and R is the sample correlation matrix.
- [4] Suppose the random vector \underline{X} is such that $E(\underline{X}) = \underline{\mu}$ and $Cov(\underline{X}) = \Sigma$. Find $E(\underline{X},\underline{X}')$. Let \underline{Y} be another random vector with $E(\underline{Y}) = \underline{\delta}$ and $Cov(\underline{X},\underline{Y}) = \Sigma_{XY}$. Derive $E(\underline{Y},\underline{X}')$.
- [5] Suppose the observed data matrix for a 3-dimensional random vector is given by

$$\mathcal{X} = \begin{pmatrix} -1 & 2 & 5 \\ 3 & 4 & 2 \\ -2 & 2 & 3 \end{pmatrix}.$$

- (a) For the observations on variable X_1 , find the projection on 1.
- (b) Find the deviation vectors and link them with the sample standard deviations.
- (c) Calculate the angle between the deviation vectors \underline{d}_1 and \underline{d}_2 .
- (d) Using the deviation vectors \underline{d}_1 , \underline{d}_2 and \underline{d}_3 , find $\mathcal{X} \overline{\underline{x}} \, \underline{1}$ and verify whether it is of full rank.
- (e) Find the generalized sample variance and the total sample variance.

[6] Suppose the mean vector and covariance matrix of $\mathbf{X} = (X_1, X_2, X_3, X_4)^{'}$ is given by

$$\mu = \begin{pmatrix} 4 \\ 3 \\ 2 \\ 1 \end{pmatrix}, \quad \Sigma = \begin{pmatrix} 3 & 0 & 2 & 2 \\ 0 & 1 & 1 & 0 \\ 2 & 1 & 9 & -2 \\ 2 & 0 & -2 & 4 \end{pmatrix}.$$

Let $X_{(1)} = (X_1, X_3)$ and $X_{(2)} = (X_2, X_4)$ be 2 subvectors; A = (1, 2) and $B = \begin{pmatrix} 1 & -2 \\ 2 & -1 \end{pmatrix}$.

- (a) Find $Cov(AX_{(1)})$, $Cov(BX_{(2)})$ and $Cov(AX_{(1)}, BX_{(2)})$.
- **(b)** Find the joint distribution of $AX_{(1)}$ and $BX_{(2)}$ if $X \sim N_4(\mu, \Sigma)$.
- (c) With $X \sim N_4(\mu, \Sigma)$, find the marginal distributions of $X_{(1)}$ and $X_{(2)}$ and the conditional distribution of $X_{(2)}$ given $X_{(1)}$.
- [7] Suppose the covariance matrix of a 3-dimensional random vector X is given by

$$\Sigma = \begin{pmatrix} \sigma^2 & \rho \sigma^2 & 0 \\ \rho \sigma^2 & \sigma^2 & \rho \sigma^2 \\ 0 & \rho \sigma^2 & \sigma^2 \end{pmatrix}; |\rho| < \frac{1}{\sqrt{2}}$$

Suppose the underlying random vector is $N_3(0,\Sigma)$, find the joint distribution and the marginal distributions of the principal components.

- [8] Determine the population principal components Y_1 and Y_2 for the covariance matrix $\Sigma = \begin{pmatrix} 5 & 2 \\ 2 & 5 \end{pmatrix}$. Further, find ρ_{Y_1,X_1} and ρ_{Y_1,X_2} .
- [9] Let $X_1,...,X_n$ be a random sample from $N_p(0,\Sigma)$, $\Sigma > 0$. Define the $p \times n$ data matrix X as $X = (X_1,...,X_n)$
 - (a) Find the distribution of $U\left(I_n \frac{1}{n}\mathbb{1}^{n}\right)U$, where $U = (U_1, ..., U_n)$ with $U_i = a X_i$, i = 1(1)n, $a \in \mathbb{R}^p$, $a \neq 0$.
 - **(b)** Find the distribution of $X \ \underline{b}, \ \underline{b} \in \Re^n$ such that $\ \underline{b}' \ \underline{b} = 1$.
 - (c) Find the distribution of $\underline{b}' X' \Sigma^{-1} X \underline{b}$.

- [10] Let $Y_0, Y_1, ..., Y_p$ be independent and identically distributed random variables with mean 0 and variance σ^2 . Define $X_i = Y_0 + Y_i$; i = 1(1)p.
 - (a) Show that there is a principal component of $\bar{X} = (X_1, ..., X_p)^T$ that is proportional to $\bar{X} = \frac{1}{p} \bar{1}^T \bar{X}$.
 - (b) Show that the above principal component is in fact the first principal component.
- [11] Let $X_1,...,X_n$ be a random sample from a p-dimensional multivariate population with mean vector $\underline{\mu}$ and covariance matrix Σ . Let $X = (X_1,...,X_n)$ be the $p \times n$ data matrix. Prove or disprove

"
$$n S_n = X \left(I_n - \frac{1}{n} \underbrace{1}_n \underbrace{1}_n' \right) X'$$
"

where, S_n is the sample variance covariance matrix with divisor n.

[12] Let $X \sim N_p(0,\Sigma)$, where Σ is a singular matrix of rank r < p and \exists a non singular $p \times p$ matrix $H \ni$

$$H \Sigma H' = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}.$$

If B is a g-inverse of Σ , find the distribution of X B X.

- [13] Let $X_1, X_2, ..., X_n$ be i.i.d. $N_m(\mu, \sigma^2 I_m)$ and B is $k \times m$ matrix of constants with $BB^T = I_k$.
 - (a) Find the distribution of

(i)
$$\sum_{j=1}^{n} B X_{j}$$
, (ii) $\sum_{j=1}^{n} \left(X_{j} - \mu\right)^{T} \left(X_{j} - \mu\right)$ and (iii) $\sum_{j=1}^{n} \left(X_{j} - \mu\right) \left(X_{j} - \mu\right)^{T}$.

- **(b)** Let $\underline{Y} = B \, \underline{X}_n$, find the distribution of $Z = \left(\underline{X}_n^T \, \underline{X}_n \underline{Y}^T \underline{Y} \right)$. Are Z and \underline{X}_n independent? Are Z and \underline{Y} independent?
- [14] Let X_i , i=1,...,n be independently distributed as $N_P(\mu, \Sigma)$. Find the distribution of $\sum_{i=1}^n a_i X_i$; where $a_1,...,a_n$ are real.

[15] Let $\tilde{X} = (X_1, X_2, X_3)$ be distributed as $N_3(\mu, \Sigma)$,

$$\Sigma = \begin{pmatrix} 1 & \rho & \rho \\ \rho & 1 & \rho \\ \rho & \rho & 1 \end{pmatrix}; -1/2 < \rho < 1.$$

- [16] Find the joint probability density function of $(X_1 + X_2, X_1 X_2)$.
- [17] Let $X \sim N_2(\mu, \Sigma)$ with μ and $\Sigma = \begin{pmatrix} 3 & 2 \\ 2 & 2 \end{pmatrix}$. Find the distribution of $Y = X_1^2 + \frac{3}{2}X_2^2 2X_1X_2$.
- [18] Suppose $Y \sim N_n(X \mu, I_n)$, where X is a $n \times p$ matrix of constants and μ is a $p \times 1$ vector of constants. Find the distribution of $Y'(I_n X(X'X)^{-1}X')Y$.
- [19] Suppose $X \sim N_2(\mu, \Sigma)$ with $\mu = (2, 2)$ and $\Sigma = I_2$. Consider A = (1, 1) and B = (1, -1). Verify whether AX and BX are independent.
- [20] Let $X_1, X_2, ..., X_n$ be a random sample from a population which is $N_P(\mu, \Sigma)$.
 - (a) Derive the sufficient statistic for μ when $\Sigma = \Sigma_0$ is known.
 - (b) Derive the sufficient statistic for Σ when $\mu = \mu_0$.
 - (c) Check whether the derived sufficient statistic are unbiased estimators for the corresponding unknown parameters.
- [21] Suppose that the distribution of the $m \times m$ random matrix A is Wishart $W_m(n, \Sigma)$,

 $\Sigma > 0$. Let $A \& \Sigma$ be partitioned as

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} & \& \Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}$$

 $A_{11}~\&~\Sigma_{11}~\text{are k x k}, A_{12}~\&~\Sigma_{12}~\text{are k x m-k}, A_{21}~\&~\Sigma_{21}~\text{are m-k x k and}$ $A_{22}~\&~\Sigma_{22}~\text{are m-k x m- k}.~\text{Find the distributions of}~A_{11}~\&~A_{22}~.$

[22] Let $X_1, X_2, ..., X_n$ be a random sample from a population which is $N_m(\mu, \Sigma)$. Define the $n \times m$ data matrix as

$$X = \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix}.$$

Prove that $nS_n = (X - 1\overline{X}) (X - 1\overline{X})$.

[23] Suppose that the distribution of the $m \times m$ random matrix A is Wishart $W_m(n, \Sigma)$, $\Sigma > 0$. Let Φ be an $m \times m$ symmetric matrix of full rank. Prove that

$$E\left(\exp\left(tr\frac{i}{2}A\Phi\right)\right) = \prod_{j=1}^{m}\left(1-i\lambda_{j}\right)^{-n/2},$$

where, $\lambda_1,...,\lambda_m$ are the eigen values of $\Sigma^{1/2} \, \Phi \, \Sigma^{1/2}$.

- [24] Let A be a Wishart $W_m(n,\Sigma)$. For a $k \times m$ non random matrix of full row rank, M, find the characteristic function of M AM.
- [25] Let $X_1, X_2, ..., X_n$ be a random sample from a population which is $N_m(\mu, \Sigma)$. Derive the distribution of

$$\bar{X}' S \bar{X} / \bar{X}' \Sigma \bar{X}$$
.

- [26] Let A be a Wishart $W_m(n,\Sigma)$. Find an unbiased estimator of Σ^{-1} .
- [27] Let $X_1, X_2, ..., X_n$ be a random sample from $N_m(\mu, \Sigma)$, $\Sigma > 0$. Define a transformation $X \to Y = A X + \beta$, $X = A X + \beta$, and that based on $X = (X_1, X_2, ..., X_n)$ and that based on $X = (X_1, X_2, ..., X_n)$ are the same.

- [28] Suppose $X_1^{(1)},....,X_{n_1}^{(1)}$ be a random sample from $N_p\left(\mu^{(1)},\Sigma\right)$ and $X_1^{(2)},....,X_{n_2}^{(2)}$ be a random sample from $N_p\left(\mu^{(2)},\Sigma\right)$, $\Sigma > 0$.
 - (a)Under the condition that $\underline{\mu}^{(1)} = \underline{\mu}^{(2)}$, find the distribution of $(\overline{X}_1 \overline{X}_2)' S_p^{-1} (\overline{X}_1 \overline{X}_2)$. Where, \overline{X}_1 and \overline{X}_2 denote the sample mean vectors and S_p is the pooled sample covariance matrix.
 - (b) Derive the appropriate test statistic based on Hotelling's T^2 statistic for testing $H_0: \mu^{(1)} = \mu^{(2)}$ against $H_A: \mu^{(1)} \neq \mu^{(2)}$.
 - (c) Obtain $100(1-\alpha)\%$ confidence regions for $\mu^{(1)}$, $\mu^{(2)}$ and $\mu^{(1)} \mu^{(2)}$.
- [29] Let $X_1, X_2, ..., X_n$ be a random sample from a population which is $N_{2m}(\mu, \Sigma)$, $\Sigma > 0$. Derive the testing procedure for testing $H_0: \mu_i = \mu_{i+m}; i = 1(1)m$ against $H_A:$ at least one such relation does not hold.
- [30] Let $X_1, X_2, ..., X_n$ be a random sample from $N_m(\mu, \Sigma)$, $\Sigma = diag(\sigma_{11}, ..., \sigma_{mm})$. Obtain a simultaneous confidence interval for $\mu_1 \mu_2$ and $\mu_1 + \mu_2$, such that the joint confidence is exactly $100(1-\alpha)\%$.
- [31] Let $X_1, X_2, ..., X_n$ be a random sample from $N_m(\mu, \Sigma)$, $\Sigma > 0$. Using Bonferroni's approach, construct simultaneous confidence intervals of confidence level at least 90% for $\mu_1 \mu_m$ and $\mu_2 \mu_{m-1}$ under the following scenarios;
 - (a) the two contrasts are given equal importance and
 - (b) importance of the contrast $\mu_1 \mu_m$ is three times that of the contrast $\mu_2 \mu_{m-1}$.