
Worst Case Execution Time (WCET)
estimation through

Abstract Interpretation
in the presence of Data Caches

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore

NPTEL Course on Compiler Design

Outline
Introduction
Four subproblems
− Address analysis
− Cache analysis
− Access Sequencing
− Worstcase Path Analysis

Experimental setup
Conclusions

Introduction

WCET Estimation - 1
Estimation of worst case execution time of
programs
− extremely important in the context of real time

systems where
− the correctness of the system depends on

the computations performed and
the timing of such computations

WCET Estimation - 2
For task scheduling on such systems
− it is necessary to know whether the task can

execute to completion within a predetermined
time interval

Given a program and a target architecture
the WCET problem is
− to estimate a bound on the maximum execution

time taken by the program for any input data
set

WCET Estimation - 3
A simple approach
− to assume worst case latency for every instruction
− determine the maximum execution time of each basic block
− solve an integer linear program for maximizing the execution

time along any path, subject to structural constraints.

This approach may over-estimate theWCET by a large
amount
− it fails to recognize the presence of performance enhancing

features such as caches and pipelines in the architecture

WCET Estimation - 4
In the context of hard real time systems
− WCET estimate of a program must be safe
− estimate cannot be exceeded by the actual execution

time for any input data set
− simultaneously, estimate must be tight to reduce

resource allocation costs
Safety may be relaxed in the case of soft real-time
systems where
− deadlines may occasionally be missed without having

a significant impact on the quality of service offered

Data cache effect on WCET

Configuration 4 way, 32 byte blocks, 256 sets
Latency (cycles) hit: 1, rd miss: 6, write miss: 4

WCET estimates
WCET estimates must be safe and as tight as
possible

Existing Art for WCET
(with Dcache)

Linear algebra based
− Cache Miss Equations
− Presburger Arithmetic

Abstract Interpretation based
− MUST analysis

Data flow based
− Static cache simulation

Simulation based

Four Subproblems
Address analysis
− Abstract Interpretation

Cache analysis
− Abstract Interpretation

Access Sequencing
− Partial unrolling (physical and virtual)

Worstcase Path Analysis
− ILP formulation

Subproblem 1:
Address Analysis

Objective
− To compute a safe approximation of the

set of memory locations that can be
accessed by any memory reference

A special case of general executable
analysis

Executable Analysis -
Applications

Detecting malicious content
Algorithm learning
Code comparison
Timing analysis
Cross platform porting
Source code recovery
Verification

Some Issues
Absence of type information
Difficult to separate address generation and
data computations
Compiler transformations might have
changed apparent code structure
Difficult to reverse-map registers to source
variables

Traditional Analysis
Static objects tracked
− registers
− statically known memory partitions

absolute offsets
stack operations
all locations within a partition are tracked
collectively

Traditional Analysis
Memory partitions are determined by
scanning the global data section and program
code for numeric offsets and stack
operations.
Simultaneous numeric and pointer analyses
All computations are tracked
Abstractions for the computations are used

Abstract Interpretation
Define
− an abstract domain
− operations on the elements of that domain

must be consistent with the concrete execution
semantics

At any point, the set of abstract values is an
over-approximation of the possible set of
concrete values

Abstract Interpretation -
An Example

A language with integers and *
− e ::= int | e*e

Concrete Semantics
− μ : Exp Z
μ (i) = int.value
μ (e1*e2) = μ (e1)*μ (e2)

An Abstract Semantics
• Compute only sign of the

result
– σ : Exp {+, -, 0}
– σ (i) = +, if i > 0

0, if i = 0
-, if i < 0

– σ (e1 * e2
) = σ (e1

) □ σ (e2
)

□ + 0 -
+ + 0 -
0 0 0 0
- - 0 +

Abstract and Concrete Values
• Associate each abstract

value with the set of
concrete values it
represents

γ : {+, -, 0} 2Z

γ (+) = {i | i > 0}

γ (0) = {0}

γ (-) = {i | i < 0}

• We need to add ┬ (top)
and ┴ (bottom) elements
to the set of abstract values

• Our abstract domain is
now a lattice

• We can now map other
operations such as +, -, and
/ to suitable operations on
the abstract domain

Concretization Function
Mapping from
abstract values to
sets of concrete
values (γ: A 2D)
μ (e) ε γ(σ (e))
μ : Exp S, S ε 2D

D: Concrete domain
A: Abstract domain

Exp

σ

A

αγ

μ(e) ε S, S ε 2
D

2D

Abstraction Function
• Mapping from concrete

values to abstract values
– The dual of concretization

– The smallest value of A that
is the abstraction of a set of
concrete values

α : 2Z A

α(S) = lub({ - | i < 0 Λ i ε S},

{ 0 | 0 ε S},

{ + | i > 0 Λ i ε S})

┬

┴

+ 0
_

α({24,45,3}) = +
α({-2,-87,-123}) = -
α({0}) = 0
α({-5, 2}) = ┬

Abstract Interpretation
Consists of
− An abstract domain A, and a concrete

domain D
− An abstraction function α, and a

concretization function γ, forming a
Galois Connection (or insertion)

− A Sound abstract semantic function σ
approximates standard semantics

Abstract Domains
The abstract domains can be thought of as
dividing the concrete domain into subsets
(not disjoint)
The abstraction function maps a subset of
the concrete domain to the smallest abstract
value
The concretization function maps abstract
values to sets of concrete values

Galois Connection

Exp

σ
A

γ αExp

σ
A

γ α

This diagram must commute
id ≤ γ ●α
− for all x ε 2

D, x is a subset of
γ(α(x))

id = α ●γ
− for all x ε 2

D, x = α(γ(x))

α and γ are monotonic
Abstract operations opA are
locally correct, i.e.,

γ(opA(a1
,...,an

) is a superset of
op(γ(a1

),..., γ(an
))

μ(e) ε S, S ε 2
D

2D

Circular Linear Progressions
(CLP)

• Abstraction for finite width computations
• CLPs are used to represent the discrete values

contained in various static objects, viz., registers,
memory partitions, etc.

• Safety on overflow
• Easily Composable

Definitions for arithmetic, logical, set, bitwise
operations

Efficient analysis
Quadratic space and time complexity

The CLP domain
3-tuple representation (l,u,δ), using a finite
number of bits
− Lower bound l
− Upper bound u
− Step δ

Visualization
(-1,1,2) vs (1,-1,2)

Example

11111100 = -4 = ~3
+ 00000100 = 4
1 00000000 = 0

(overflow)

11111000 = -8 = ~7
+ 00000100 = 4

11111100 = -4
(no overflow)

Compositions
Set
− Union
− Intersection
− Difference

Arithmetic
− Addition
− Subtraction
− Multiplication
− Division

Shift
− Left, Right

Bitwise
− AND
− NOT

Comparison
− Equality, Inequality
− Less than, Greater than

Example - Union
Select alternative for diff as t1 or t2 for
minimum over-approximation

Subproblem 2:
Cache Analysis

Objective
− To compute a lower bound on the

number of cache hits
Extension of the Abstract Cache
model and Must Analysis technique

Cache Must-Analysis
Tracks the set of memory blocks definitely
residing in the cache at any program point
Useful for tracking memory accesses that will
always result in cache hits regardless of program
input
Only set associative caches with perfect LRU
replacement policy
Extensions
− To support sets of access addresses
− When individual accesses cannot be guaranteed

Overview of Cache Analysis
Abstract Interpretation using elements from
abstract cache domain
Abstract cache
− blocks in a set arranged in increasing order of age
− each block can hold data corresponding to a set of

memory blocks (not one block as in the concrete case)

Abstract cache state at any point in the
program
− a safe approximation of all possible concrete cache

states at that point over various execution sequences

MUST Analysis
Provides guarantees of upper bounds of
ages of memory blocks in the cache
− If a memory block is present in the abstract cache

state, the corresponding access will always be a hit
− Lower bound on the number of hits

“Join” computation takes maximum ages

Key Differences Between
Instruction and Data References

Address set for the latter may not be a singleton
set, as for example, array references
When the address set is not singleton, we cannot
say which particular subset of addresses will be
definitely accessed during actual execution
No new element can be brought into the abstract
cache as that element may never be accessed
during any concrete execution
If the address set is singleton, the addressed
memory block will always be brought into the
cache

State Update (Extended)
Straightforward for singleton address set
Others (say array access)
− Individual accesses cannot be guaranteed
− No new memory block can be brought into the

abstract cache
− Memory blocks in the cache cannot decrease in age

Example:

Reference Classification
At fix-point
− ah : if all memory blocks in the access set (CLP) are

in the abstract cache (always hit)
− nc : otherwise (non-classified)

Latency calculation
− Hit latency for ah references
− Miss latency for nc references
− Conservative, but safe

Subproblem 3:
Access Sequencing

Objective
−Determine frequency and

ordering of accesses to distinct
memory locations (referenced
during execution)

Overview
Sets of memory addresses do not incorporate
reuse and conflict information
− {x,y} represents accesses x,x,x,y and x,y,x,y

Idea is to unroll loops partially
− Both physical and virtual unrolling

Physical unrolling creates “regions”
Analysis alternates between expansion and summary
modes

− Extent of unroll is controlled by the user
Two parameters: frac_exp and samples

Example Loop

Example

frac_exp = 0.1 (10%)
samples = 4
#regions = 4*2 = 8
10% of the iterations
will be analyzed in E-
mode spread over 4
regions

Analysis Modes
Expansion
− Virtual unrolling
− No fix-point iteration
− Simultaneous address &

cache analyses
− Slow
− Helps to prime dcache

Summary
− No virtual unrolling
− Fix-point iterations
− First address, then

cache analysis
− Fast

Usually higher incidence of singleton accesses in
expansion than in summary mode

Modes are equivalent for non-loop portions

Sample Analysis

An Estimation Heuristic
References may be classified as nc even if potential
reuse possibilities exist
Probable average latency:

May not be safe as accesses cannot be guaranteed
Useful for

Soft real time systems
Reasoning about the tightness of the safe estimate

Objective
− To compute the overall worst case path in the

program and the associated cost
After the worst case execution costs for
each basic block has been individually
computed, an approximation of the overall
worst case cost and corresponding path is
obtained by solving an ILP

Subproblem 4:
Worstcase Path Analysis

Integer Linear Programming to maximize
overall execution cost subject to structural
constraints
− Flow
− Loop
− Interprocedural

Objective function:
− xi is the variable for block i
− wi is the worst case cost of basic block i

Overview

Implementation

Cache
Analysis

Loop
Identification &

unroll

Analysis
Mode

Selection

Worst case Path &
Cost Determination

WCET(frac_exp, samples)

WCET estimates

WCET estimates

WCET estimates

WCET estimates

WCET estimates

Conclusions
WCET analysis for executables
Modular approach
CLP for address analysis
Extension of MUST analysis to support
− Non scalar references
− When individual accesses cannot be guaranteed

Partial physical and virtual unrolling for access
sequencing
Heuristic for soft real time systems

Future Work
WCET estimation
− in the presence of a cache hierarchy
− with dynamic voltage scaling
− for multi-core architectures and

concurrent programs
− with other cache replacement policies

Thank You

References
1. P. Cousot and R. Cousot, Abstract Interpretation: A

Unified lattice model for static analysis of programs by
construction or approximation of fixpoints, ACM POPL,
1977.

2. C. Ferdinand and R. Wilhelm, Fast and efficient cache
behaviour prediction for real-time systems, Real-Time
Systems, 17(2/3), Springer, 1999.

3. R. Sen and Y.N. Srikant, Executable analysis using
abstract interpretation with circular linear progressions,
ACM MEMOCODE 2007.

4. R. Sen and Y.N. Srikant, WCET Estimation for
executables in the presence of data caches, ACM
EMSOFT 2007.

	Slide Number 1
	Outline
	Introduction
	WCET Estimation - 1
	WCET Estimation - 2
	WCET Estimation - 3
	WCET Estimation - 4
	Data cache effect on WCET
	WCET estimates
	Existing Art for WCET �(with Dcache)‏
	Four Subproblems
	Subproblem 1: �Address Analysis
	Executable Analysis - Applications
	Some Issues
	Traditional Analysis
	Traditional Analysis
	Abstract Interpretation
	Abstract Interpretation - An Example
	An Abstract Semantics
	Abstract and Concrete Values
	Concretization Function
	Abstraction Function
	Abstract Interpretation
	Abstract Domains
	Galois Connection
	Circular Linear Progressions (CLP)
	The CLP domain
	Example
	Compositions
	Example - Union
	Subproblem 2: �Cache Analysis
	Cache Must-Analysis
	Overview of Cache Analysis
	MUST Analysis
	Key Differences Between Instruction and Data References
	State Update (Extended)‏
	Reference Classification
	Subproblem 3: �Access Sequencing
	Overview
	Example Loop
	Example
	Analysis Modes
	Sample Analysis
	An Estimation Heuristic
	Subproblem 4: �Worstcase Path Analysis
	Overview
	Implementation
	WCET estimates
	WCET estimates
	WCET estimates
	WCET estimates
	WCET estimates
	Conclusions
	Future Work
	Thank You
	Slide Number 56

