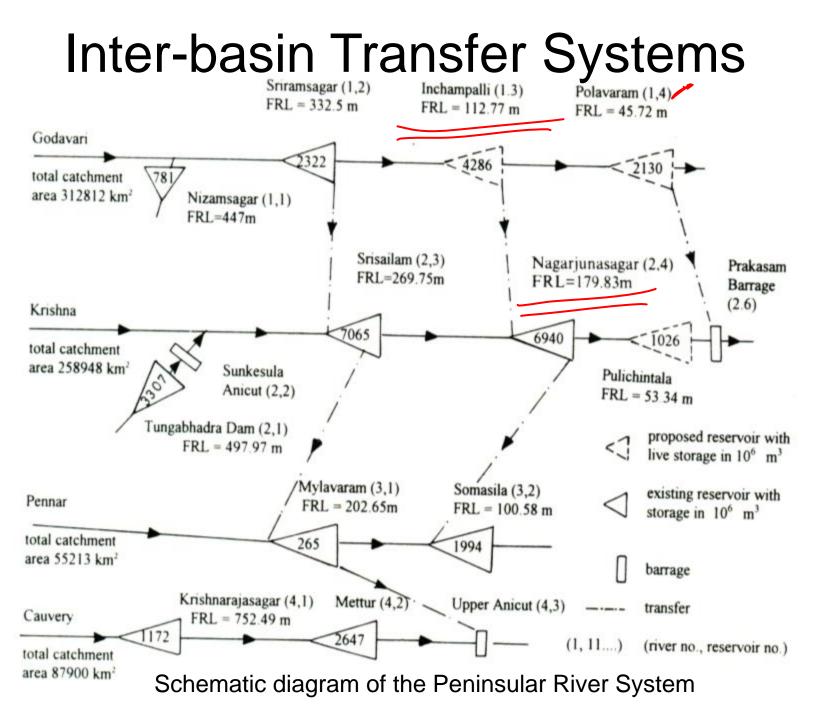
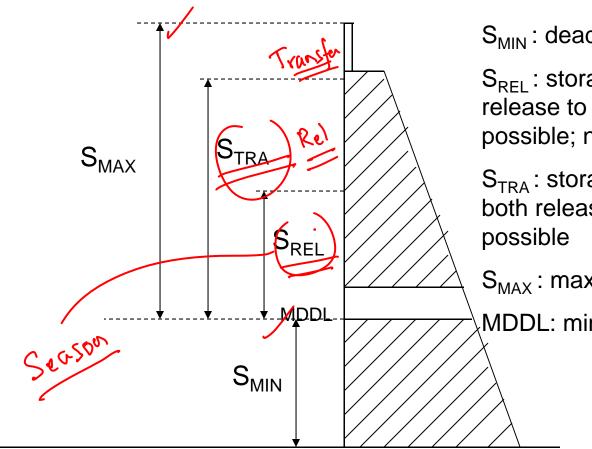


Water Resources Systems: Modeling Techniques and Analysis


Lecture - 40 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

Summary of the previous lecture

Crop yield optimization:


INTER-BASIN TRANSFER SYSTEMS

Inter-basin Transfer Systems Salient features of the reservoirs of the system

Reservoir (status*)	Location	Catchment area (x 10 ³ km²)	Command area (× 104 ha)	Power generated (MVV)	Live storage (Mm ³)	Dead storage (Mm ³)	Period of inflow record
NZS (E)	76∘ 15' E 18∘ 10' N	21.7	11.13	15	780	60	1944-86
SRSP (E)	78∘ 30' E 18∘ 55' N	40.5	67.14	36	2320	850	1963-83
IC (P)	80∘ 25' E 18∘ 37' N	42.7	63.58	975	4286	6089	1950-75
POL (P)	81∘ 46' E 17∘ 13' N	37.6	29.14	5 15	2130	3381	1966-86
TB (E)	76∘ 18' E 15∘ 16' N	28.8	34.80	117	3307	457	1951-85
SA (E)	77∘ 45' E 15∘ 48' N	36.5	11.30	1 <u>212</u> 7	2.22	12221	1966-87
SS (E)	78∘ 54' E 16∘ 05' N	NA	NA	770	7065	3049	1964-86
NS (E)	79∘ 36' E 16∘ 45' N	10.0	13.36	110	6940	4610	
PC (P)	80∘ 03' E 16∘ 46' N	19.5	NA		1026	270	1945-81
PB (E)	80∘ 55' E 16∘ 35' N	16.6	48.56				1945-81
MYL (E)	78∘ 20' E 14∘ 51' N	19.2	1.95		266	17	1969-86
SMS (E)	79∘ 18' E 14∘ 29' N	29.4	16.39		1994	214	1929-82
KRS (E)	76∘ 31' E 12∘ 25' N	10.6	11.36		1172	125	1934-86
MET (E)	77∘ 55' E 11∘ 55' N	NA	12.14	200	2647	553	1966-87
UA (E)	78∘ 50' E 10∘ 50' N	NA	44.52		0.0		1966-87

5

 S_{MIN} : dead storage capacity

 S_{REL} : storage capacity above which release to downstream reservoirs is possible; no transfer

 S_{TRA} : storage capacity above which both release and transfer are possible

S_{MAX}: maximum live storage capacity

MDDL: minimum draw down level

Ref: Vijay Kumar, V., Rao, B. V. and Mujumdar, P. P. (1996), Optimal Operation of MultibasinReservoir System, *Sadhana,* Indian Academy of Sciences, 21(4), pp. 487-502.

Release and transfer policies:

• Release $R_t^{M,L}$ from reservoir *M* to a downstream Sume reservoir *L*, if exists, is given by

$$R_{t}^{M,L} = MIN \begin{cases} S_{1t}^{M} - S_{REL,j}^{M}, & \text{if } S_{1t}^{M} > S_{REL,j}^{M}, & \text{and} \\ d_{t}^{L} - S_{t}^{L}, & \text{if } S_{t}^{L} < d_{t}^{L}, \\ \end{array} \\ = 0 \quad \text{otherwise} \end{cases}$$

 S_{1t}^{M} : storage at reservoir *M* during period t after accounting for its own demand d_t^{M} , releases and transfers committed to the reservoir *M* from other reservoirs and release commitments made from the reservoir *M* to other reservoirs downstream of *M*

- S_t^L : storage at the reservoir *L* after accounting for all transfers and releases from other reservoirs downstream of *M*, committed to it during the period and
- $S_{REL,j}^{M}$: releasable storage for the reservoir *M* in season *j* to which the period *t* belongs.
- d_t^L : water demand at reservoir *L* in period *t*

 The amount of water transferred, T_t^{M,P}, from reservoir M of a basin to reservoir P of another basin in period t, when a transfer link exists, is given by

$$T_{t}^{M,P} = MIN \begin{cases} S_{2t}^{M} - S_{TRA,j}^{M}, & \text{if } S_{2t}^{M} > S_{TRA,j}^{M}, & \text{and} \\ d_{t}^{P} - S_{t}^{P}, & \text{if } S_{t}^{P} < d_{t}^{P}, \\ = 0 & \text{otherwise} \end{cases}$$

- S_{2t}^{M} : storage available at reservoir *M* after accounting for the diversion and release,
- $S_{TRA,j}^{M}$: transferable storage in reservoir *M* for the season *j* to which the period *t* belongs,

 S_t^P : storage at the reservoir *P* after accounting for diversion, release and transfers committed to it for the period (by other reservoirs during the computations prior to those of reservoir *M*) and

 d_t^P : water demand at reservoir P in period t.

• Two parameters, *INCR1* for the monsoon season and *INCR2* for the non-monsoon, are introduced as multiplying factors to the irrigation demands in the corresponding periods

Prominent transfers for 50-year simulation analysis

From			Inchampally		Polava	aram	Srisailam				
Month	to	NS	G PC		PB	MYL	SMS	UA			
Jun			257(4)	635(5)	5302(18)	223(15)	48(2)	18259(30)			
Jul		4 216(14)	13204(29)	580(3)	17941(29)	1951(41)	1967(13)	102362(49)			
Aug		39495(27)	3470(10)	432(1)	13510(22)	1886(44)	3973(13)	81759(46)			
Sep		13110(14)	3626(12)	1126(3)	25430(43)	1026(23)	1608(7)	37612(44)			
Oct			937(3)	4296(10)	19605(35)	585(15)	1079(6)				
Nov			210(3)	5886(20)	9421(27)	511(13)	405(3)				
Dec			702(6)	2644(18)	2010(13)	490(14)	917(6)				
Jan					600(8)	702(18)	732(7)	11842(43)			
Feb					544(8)	578(19)	1098(9)	28686(42)			
Mar					2293(19)	661(18)	768(7)	34481(38)			
Apr					345(2)	510(15)	1188(8)	2594(31)			
May					34(2)	340(11)	226(6)				

Units: million cubic meters; figures in brackets indicate the number of times the transfer has taken place in a 50-year period

SRE STRA

• Optimization model

 U_t^k : amount of water utilized from reservoir k in period t, D_t^k : deficit in reservoir k in period t,

 $Max.\sum_{k}\sum_{t}\alpha U_{t}^{k}-\beta D_{t}^{k}$

- α represents the economic value of the water actually utilized.
- β represents the penalty (i.e., loss) associated with not meeting the demands

subject to

i) Diversion policy,

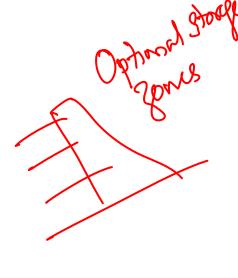
$$DIV_{t}^{k} = d_{t}^{k} \quad if, S_{it}^{k} + I_{t}^{k} > d_{t}^{k}$$
$$= S_{it}^{k} + I_{t}^{k} \quad otherwise$$

 d_t^k : water demand at reservoir k in period t,

 I_t^k : natural inflow to reservoir k in period t,

 S_{it}^{k} : storage at the beginning of period t in reservoir k

ii) Release policy,iii) Transfer policy,


To meet @ reserv its own orr K? demand

iv) Definition constraints:

- (a) $D_t^k = d_t^k U_t^k$, if positive = 0 otherwise (b) $U_t^k = \underline{DIV}_t^k + R_t^k + T_t^k$ $\mathcal{W}_t = U_t^k + U_t^k$ (c) $d_t^k = INCR1^k (\underline{DEM}_t^k), \quad \forall t \in monsoon \ season$ $= INCR2^k (\underline{DEM}_t^k), \quad \forall t \in nonmonsoon \ season$
- v) Storage continuity, physical constraints and nonnegativity of the variables; and
- vi) Constraints due to priorities discussed in the simulation model.

Summary results of the optimization

Reservoir	S _{REL, 1} (Mm ³)	S _{REL,2} (Mm ³)	S _{TRA, 1} (Mm ³)	S _{TRA,2} (Mm ³)						
(1,3)	1588.34	2793.47	2373.59	3873.01						
(1,4)*			162.91	1232.78						
(2,3)	1134.35	189.32	1521.93	417.15						
(2,4)	895.74	1525.69	685.60	417.67						

*There is no reservoir downstream of (1,4). Release not possible

Performance indices for the system:

- Failure index (F) : Ratio of the sum of all the failures to the total number of periods.
- Reliability (ρ) : 1 F
- Resiliency (y): Ratio of the number of transitions from failure state to a satisfactory state and the total number of failures
- Vulnerability (v) : ratio of largest deficit during period of operation to the corresponding demand at the reservoir.
- Deficit ratio (δ) : ratio of the total deficit to the total demand.

Summary of the yearly performance indices for the system

Reliability (p)	0.946
Resiliency (y)	0.680
Vulnerability (v)	0.474
Deficit ratio (8)	0.014

Monthly performance indices of the system

Index	JUN	JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY
ρ	0.903	0.907	0.986	0.992	0.983	0.977	0.960	0.946	0.930	0.911	0.859	0.869
γ	0.711	0.898	0.946	0.965	0.950	0.915	0.843	0.819	0.818	0.807	0.708	0.698
ν	0.663	0.287	0.632	0.632	0.632	0.441	0.397	0.595	0.731	0.762	0.755	0.561
δ	0.034	0.006	0.005	0.003	0.006	0.006	0.011	0.016	0.023	0.031	0.049	0.037

Yearly performance indices of the reservoirs

INDEX	NZS	SRSP	IC /	POL	TB	SA	SS	NS	PC	PB	MYL	SMS	KRS	MET	UA
ρ	0.865	0.830	0.936	0.948	0.933	0.885	0.985	0.979	0.971	0.960	0.961	0.982	0.988	0.997	0.953
γ	0.688	0.664	0.755	0.839	0.752	0.696	0.902	0.974	0.716	0.661	0.772	0.811	0.822	1.000	0.666
ν	0.850	0.829	0.507	0.472	0.373	0.309	0.226	0.442	0.609	0.737	0.817	0.456	0.140	0.258	0.752
δ	0.051	0.059	0.019	0.014	0.017	0.029	0.004	0.006	0.008	0.012	0.014	0.005	0.003	0.001	0.014

Additional reference & Web courses

 Multicriterion Analysis in Engineering and Management by K. Srinivasa Raju and D. Nagesh Kumar, PHI Learning Pvt. Ltd., New Delhi, India, ISBN 978-81-203-3976-7, 2010

grof. Napera

• NPTEL web courses

Optimization Methods

http://www.nptel.iitm.ac.in/courses/Webcourse-contents/IISc-BANG/OPTIMIZATION%20METHODS/New_index1.html

Advanced topics

- Genetic algorithms; Particle Swarm Optimization (PSO), Ant Colony Optimization (ASO)
- Artificial neural networks; Support Vector Machines