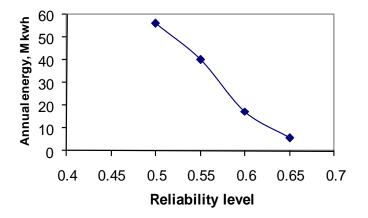


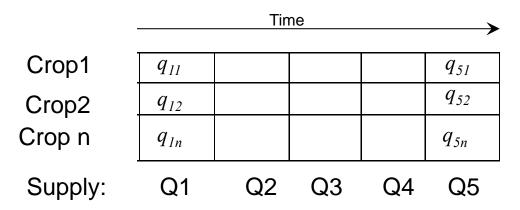
Water Resources Systems: Modeling Techniques and Analysis


Lecture - 39 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

Summary of the previous lecture

Hydro power optimization:

CBPH: Canal Bed Powerhouse RBPH: Riverbed Powerhouse

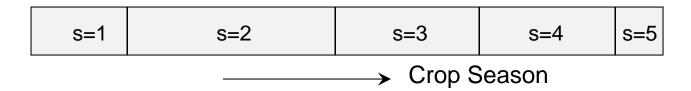


CROP YIELD OPTIMIZATION

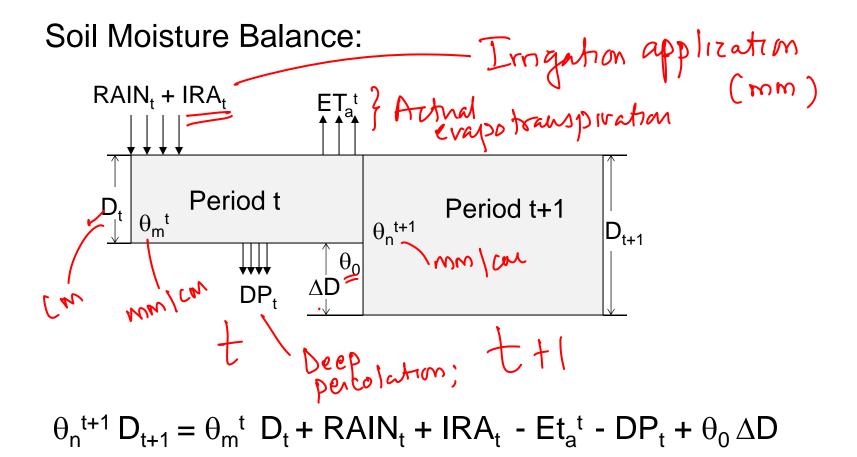
- The objective of an irrigation water management problem is to maximise the crop production, taking into account the response of the crop to the amount of irrigation applied.
- Typical crop production functions relate the yield ratio of a crop to a function of the evapotranspiration ratio over the growth stages.

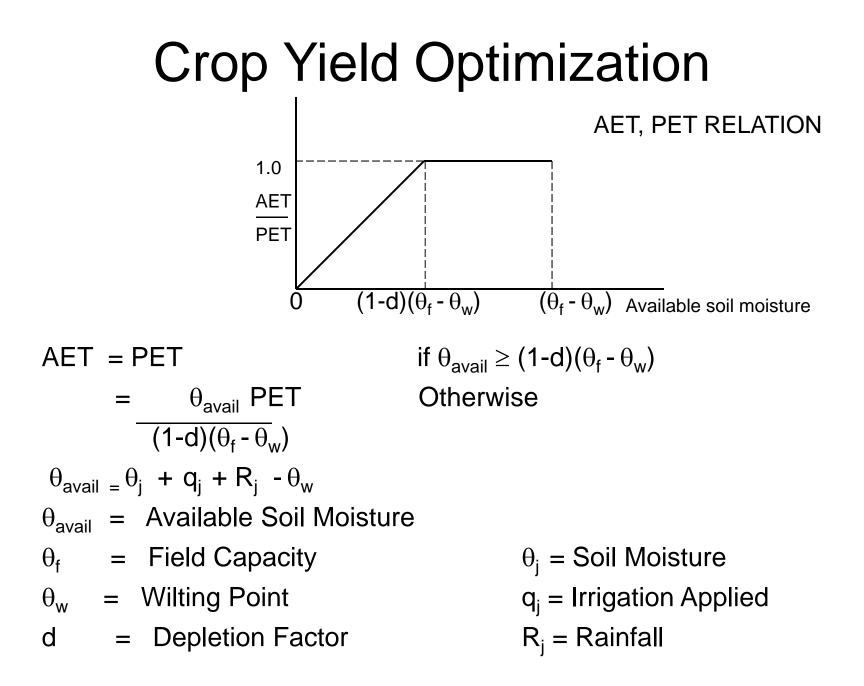
• Water allocation among crops

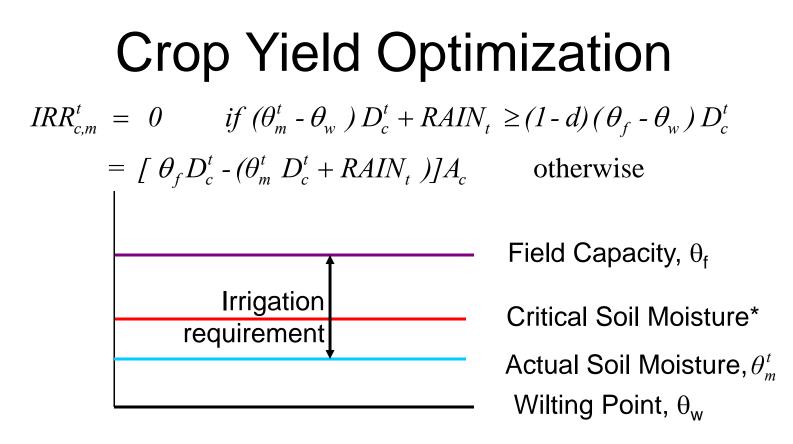
Influencing factors :Crop Areas, Rainfall, Soil Moisture, Irrigation Supply, Time of the year, PET, Crop sensitivity to deficit supply, Competition among crops for water.



Optimal allocation of a known quantity of water to maximize crop yield


Crop production function


- -System performance measure
- -Response of the crop yield to water supply during intraseasonal periods.
- A function of evapotranspiration deficits occurring during the growth stages of the crop.


$$\left(\frac{y}{y_m}\right)_c = \prod_{s=1}^{NS} \left[1 - \frac{ky_s^c}{e} \left(1 - \frac{ET_a^c}{ET_{max}^c} \right)_s \right] \dots \text{Multiplicative production}$$
function

- 1. Establishment 2. Vegetative 3. Flowering
- 4. Yield Formation 5. Ripening

Irrigation Requirement in period t : Amount of water required to raise the soil moisture to field capacity, when soil moisture is below a critical level.

* Critical Soil Moisture : $(1 - d)(\theta_f - \theta_w)$

 $\begin{bmatrix} y \\ y_m \end{bmatrix} = 1 - \sum_{g=1}^{N_g} \begin{bmatrix} Ky_g \left(1 - \frac{AET}{PET}\right)_g \end{bmatrix} \dots \text{ Additive production function}$

 N_g : number of growth stages in the crop season. g: growth stage index Ky_g : yield factor for the growth stage g y: actual yield of the crop y_{max} : maximum yield of the crop AET: actual evapotranspiration, and PET: potential evapotranspiration

The yield factor, Ky_g indicates the sensitivity of the crop yield to the evapotranspiration deficit in growth stage g

• The soil moisture balance is written for a crop *c* as

$$\theta_{c}^{t+1}D_{c}^{t+1} = \theta_{c}^{t}D_{c}^{t} + RAIN^{t} + q_{c}^{t} - AET_{c}^{t} + \theta_{0}(D_{c}^{t+1} - D_{c}^{t}) - DP_{c}^{t}$$

where θ_c is the soil moisture of crop c at the beginning of the period t,

 D_{c}^{t} is the root depth of crop c during period t,

RAIN^t is the effective rainfall (contribution of rainfall to soil moisture) in the command area in period t,

 q_{c}^{t} is the irrigation application to crop c in period t,

 AET_{c}^{t} is the actual evapotranspiration of crop c in period t,

 θ_0 is the initial soil moisture in the soil zone into which the crop

root extends at the beginning of period t+1, and

 DP_{c}^{t} is the deep percolation

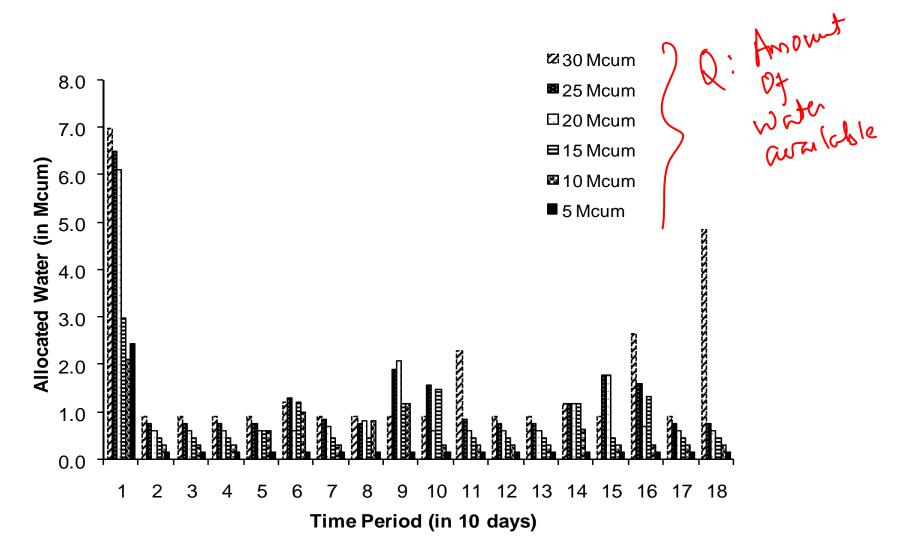
- The relationship between AET/PET ratio and the available soil moisture is approximated by a linear relationship, with AET = 0, when the available soil moisture is zero and AET = PET when the available soil moisture is equal to the maximum available soil moisture.
- θ_f and θ_w are soil moistures at field capacity and wilting point respectively.

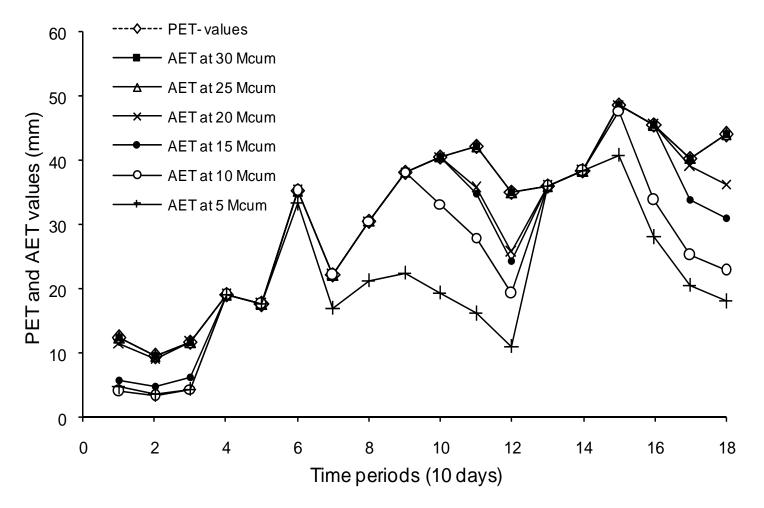
$$AET_{c}^{t} \leq \frac{(\theta_{c}^{t}D_{c}^{t} + RAIN^{t} + q_{c}^{t}) - \theta_{w}D_{c}^{t}}{(\theta_{f} - \theta_{w})D_{c}^{t}} \times PET_{c}^{t} \xrightarrow{1.0}_{PET}$$

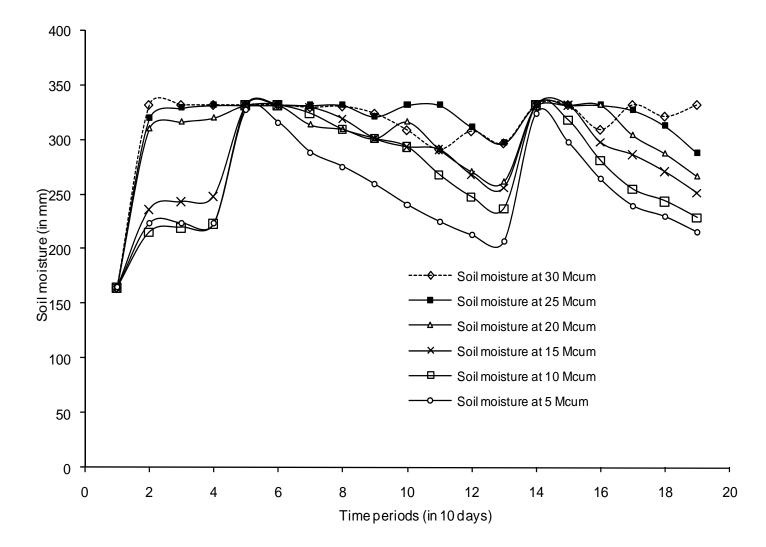
$$AET_{c}^{t} \leq PET_{c}^{t} \xrightarrow{(\theta_{f} - \theta_{w})}_{Q}$$

$$AET_{c}^{t} \leq PET_{c}^{t} \xrightarrow{(\theta_{f} - \theta_{w})}_{Q}$$

$$Auilable soil moisture$$


$$\begin{array}{c} Crop Yield Optimization\\ Max \sum_{t=1}^{T} Ky^{t} \left(\frac{AET^{t}}{PET^{t}} \right) & Yield factor\\ S.t. \left| \theta^{t+1} = \theta^{t} + q^{t} + RAIN^{t} - AET^{t} - DP^{t} \quad \forall t & Constant\\ AET^{t} \leq (\theta^{t} + q^{t} + RAIN^{t} - \theta_{w}) \times \frac{PET^{t}}{(\theta_{f} - \theta_{w})} \quad \forall t & Root ben\\ AET^{t} \leq PET^{t} \quad \forall t & Theger (0,1) \\ \theta^{t+1} \geq \theta_{f} \times \beta^{t} \quad \forall t & Sn gle \quad (rop: \\ DP^{t} \leq M \times \beta^{t} \quad \forall t & Q water (Volume) \\ \theta_{w} \leq \theta^{t+1} \leq \theta_{f} \quad \forall t & M \end{pmatrix} & M \therefore Myt mo. \end{array}$$


Data:


- Crop type : two seasonal
- Crop period: 6 months
- Crop area: 3902.50 hectares
- Field capacity: 33.2% (3.32 mm/cm)
- Wilting point: 16.5% (1.65 mm/cm)
- Root Depth of the crop : 100 cm

Time periods (10 days)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Rainfall																		
(Rain ^t)	0.5	0.0	0.0	120.0	2.0	2.0	0.0	1.0	0.0	0.0	0.0	1.0	150.0	7.0	3.0	0.0	6.7	0.0
in mm																		

Time periods (10 days)	1	2	3	4	5	6	6	7	,	8	}	Q	9	10
PET (mm)	12.32	9.49	11.68	19.06	17.59	35.	.35	22.	20	30.	65	37	.22	40.65
Ку	0.20	0.20	0.20	0.25	0.25	0.2	25	0.2	25	0.2	25	0.	25	0.25
Time periods (1 days)	0 1	1	12	13	5 1	4	1	5	1	6	1	7	1	8
PET (mm)	42	.19	35.06	36.0)1 37	.42	47	.72	45	.58	40	.4	44	.04
Ky	0.	25	0.25	0.2	5 0.	25	0.	25	0.	25	0.2	25	0.	25

Variation of yield ratio with amount of available water (Q)

*yield ratio = y/y_m

SI No.	Q (Mm ³)	Yield Ratio*
1	30	1.000
2	25	1.000
3	20	0.823
4	15	0.465
5	10	0.085
6	5	0.0

Irrigation water allocation to multiple crops

$$Max \sum_{c=1}^{N} \sum_{t=1}^{T} Ky_{c}^{t} \left(\frac{AET_{c}^{t}}{PET_{c}^{t}} \right)$$

s.t. $\theta_{c}^{t+1} = \theta_{c}^{t} + q_{c}^{t} + RAIN^{t} - AET_{c}^{t} - DP_{c}^{t} \quad \forall c, t$
 $AET_{c}^{t} \leq (\theta_{c}^{t} + q_{c}^{t} + RAIN_{c}^{t} - \theta_{w}) \times \frac{PET_{c}^{t}}{(\theta_{f} - \theta_{w})} \quad \forall c, t$
 $AET_{c}^{t} \leq PET_{c}^{t} \quad \forall c, t$
 $\theta_{c}^{t+1} \geq \theta_{f} \times \beta_{c}^{t} \quad \forall c, t$

$$AET_{c}^{*} \leq PET_{c}^{*} \forall c, t$$

$$\theta_{c}^{t+1} \geq \theta_{f} \times \beta_{c}^{t} \forall c, t$$

$$DP_{c}^{t} \leq M \times \beta_{c}^{t} \forall c, t$$

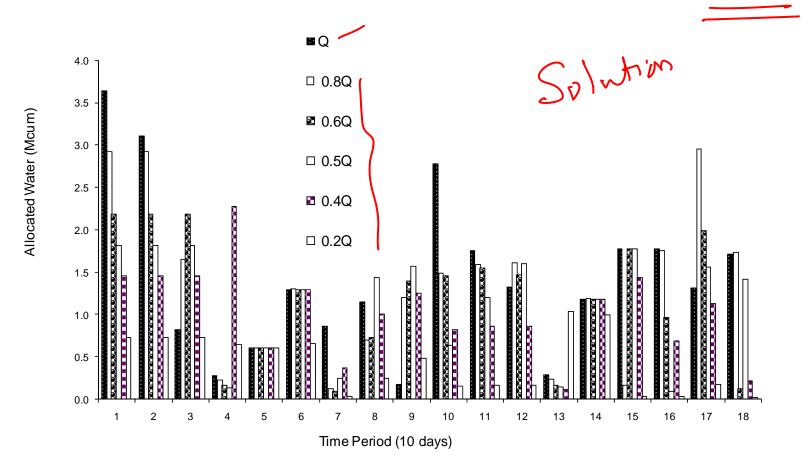
$$\theta_{w} \leq \theta_{c}^{t+1} \leq \theta_{f} \forall c, t$$

$$\sum_{c=1}^{N} q_{c}^{t} \leq Q^{t} \forall t$$

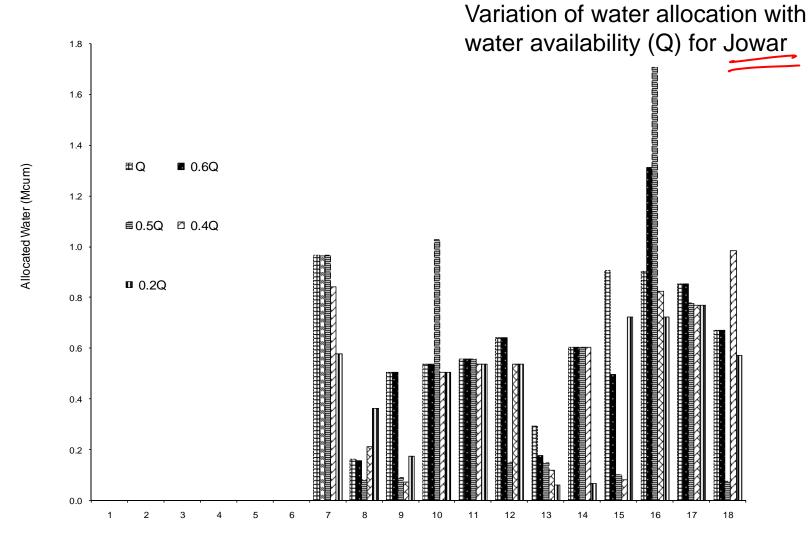
$$Water period t.$$

$$We ter period t.$$

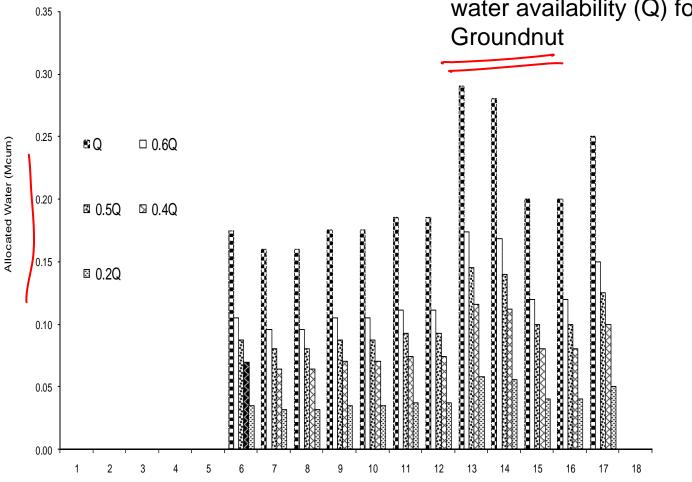
- The crop areas are 3902.50 ha (Cotton), 1977.43 ha (Jowar) and 33.10 ha (Groundnut).
- The PET values for these crops are computed from pan evaporation data.
- The problem is to allocate the known amount of water Q^t , in period t, to the three crops, such that the total (relative) crop yield is maximized at the end of the season.
- The amount of water available in a period is a deterministic value, known in advance for all periods *t*.
- The field capacity is 33.20% and wilting point is 16.50%.
- The root depth is assumed to be 100 cm throughout the season for all crops


Crop calendar

								otto	า								
										Jow	var						
								G	rou	ndn	ut						
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18

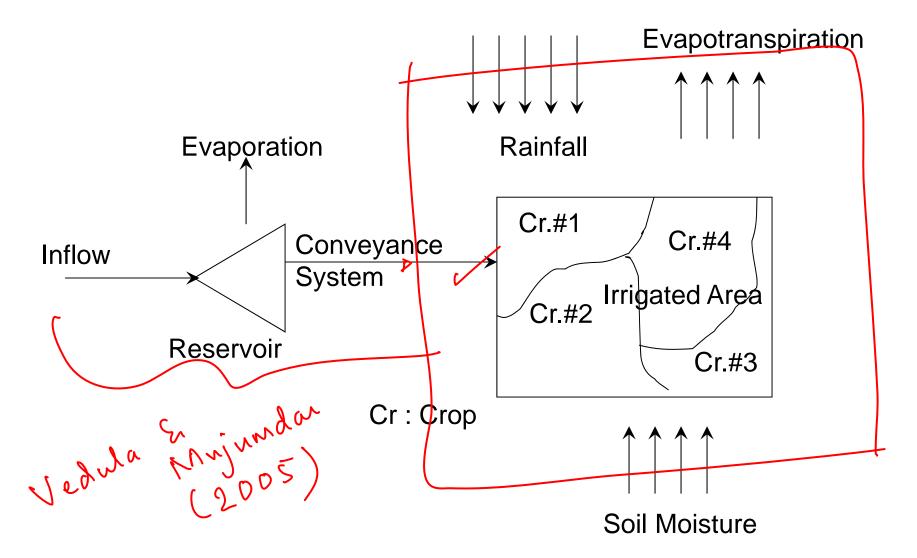

Time periods (10 days)	1	2	3	4	5	6	7	8	9
Rainfall (Rain ^t) (mm)	0.5	0.0	0.0	120.0	2.0	2.0	0.0	1.0	0.0
Available									
irrigation supply	3.65	3.65	3.65	5.70	3.70	3.50	3.20	3.20	3.50
(Q ^t) Mcum	7		- /						

Time periods (10 days)	10	11	12	13	14	15	16	17	18
Rainfall (Rain ^t) (mm)	0.0	0.0	1.0	150.0	7.0	3.0	0.0	6.7	0.0
Available irrigation supply (Q ^t) Mcum	3.50	3.70	3.70	5.80	5.60	4.00	4.00	5.00	3.00


Variation of water allocation with water availability (Q) for Cotton

24

Time Period (10 days)



Variation of water allocation with water availability (Q) for Groundput

Time Period (10 days)

RESERVOIR OPERATION FOR IRRIGATION

Reservoir Operation for Irrigation

