

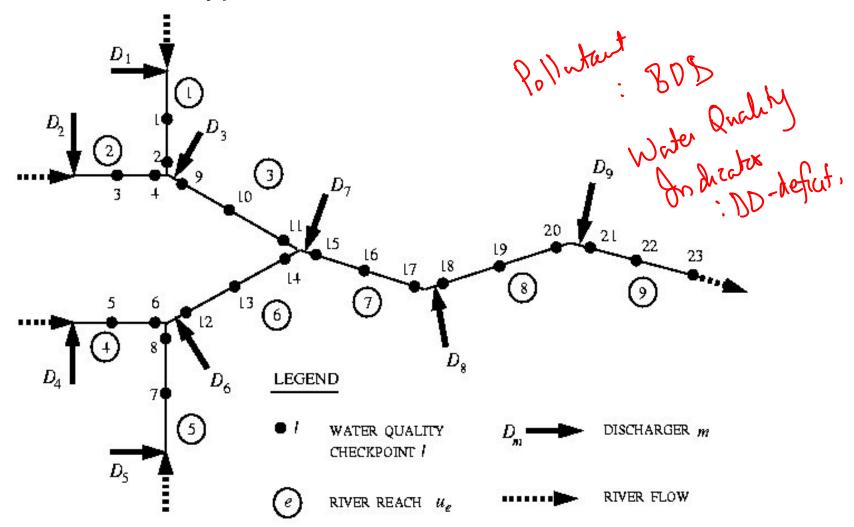
Water Resources Systems: Modeling Techniques and Analysis

Lecture - 36 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

Summary of the previous lecture

Stream Water Quality Control Problems

• The concentration level, C_{il} , of the water quality parameter *i* at the checkpoint *l* can be related to the fraction removal level, x_{imn} , of the pollutant *n* from the discharger *m* to control the water quality parameter *i*, though the transfer function that may be mathematically expressed as


$$C_{il} = \sum_{m=1}^{N_d} \sum_{n=1}^{N_p} f_{ilmn}(L_{ilmn}, x_{imn}) + \sum_{p=1}^{N_t} \sum_{n=1}^{N_p} f_{ilpn}(L_{ilpn})$$

- where L_{ilmn} is the concentration of the pollutant *n* prior to treatment from the discharger *m* that affects the water quality parameter *i* at the checkpoint *l*,
- L_{ilpn} is the concentration of the pollutant *n* from the uncontrollable source *p* that affects the water quality parameter *i* at the checkpoint *l*.

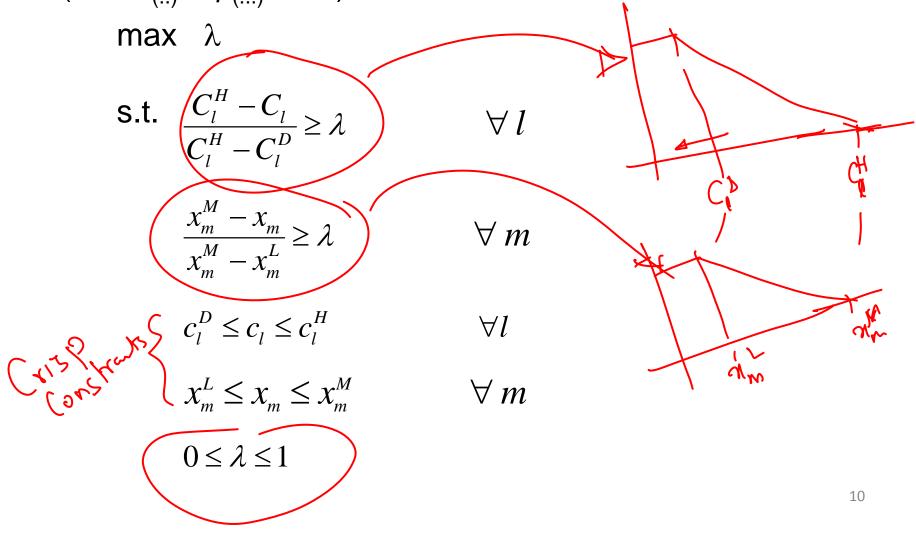
- The transfer functions $f_{ilmn}(\cdot, \cdot)$ and $f_{ilpn}(\cdot)$ represent the concentration levels of the water quality parameter *i* due to $L_{ilmn}(1 - x_{imn})$, and L_{ilpn} respectively
- These transfer functions can be evaluated using appropriate mathematical models that determine the spatial and temporal distribution of the water quality parameter due to the pollutants in the river system
- The solution of the optimization model are X* and λ* where X* is the set of optimal fraction removal levels, and λ* is the maximized m

Example – 2

Consider a hypothetical river network as shown

- The river network is discretized into 9 river reaches.
- Each reach receives a point-source of BOD load from a discharger located at the beginning of the reach.
- The only pollutant in the system is the point source of BOD waste load.
- Water quality parameter of interest is the dissolved oxygen deficit (DO deficit) at 23 number of checkpoints due to the point-sources of BOD.
- The data pertaining to the river flows and effluent flows are given in table

Effluent Flow Data				River Flow Data								
Disch arger (1)	Effluent Flow Rate (10 ⁴ m ³ /day) (2)	BOD Concentr ation (mg/L) (3)	Do Concen tration (mg/L) (4)	Riv er Re ac h r _e (5)	Flow (10 ⁶ m ³ /day) (6)	Total Flow (10 ⁶ m ³ /day) (7)	Time Of Flow (day) (8)	nation Rate	Reaerati on Rate Constant (1/day) (10)	Satur ation Do Conc. (mg/L) (11)	Permissi ble DO Deficit (mg/L) (12)	Desir able Do Deficit (mg/L) (13)
D ₁	2.134	1250	1.23	r ₁	4.6183	4.63964	0.316	0.331	0.847	10.10	3.5	0.0
D_2	10.738	525	2.15	r ₂	3.2574	3.36478	1.312	0.328	0.743	9.85	3.0	0.5
D_3	4.178	1878	2.16	r ₃	7.8757	8.04620	0.642	0.378	0.532	9.64	3.5	0.0
D_4	6.415	723	1.80	r ₄	3.9821	4.04625	1.281	0.410	0.831	9.78	3.5	0.0
D_5	8.319	1272	2.40	r ₅	5.2394	5.32259	0.732	0.320	0.754	10.20	3.0	0.0
D ₆	7.554	2080	1.41	r ₆	9.2215	9.44438	1.218	0.357	0.670	9.90	3.0	0.5
D ₇	9.832	2564	1.62	r ₇	17.0972	17.5889	1.787	0.393	0.580	9.85	4.0	1.0
D ₈	3.511	1842	1.70	r ₈	17.0972	17.624	1.823	0.383	0.425	9.65	3.5	1.5
D ₉	5.180	932	1.93	r ₉	17.0972	17.6758	2.131	0.390	0.210	9.50	4.0	1.5

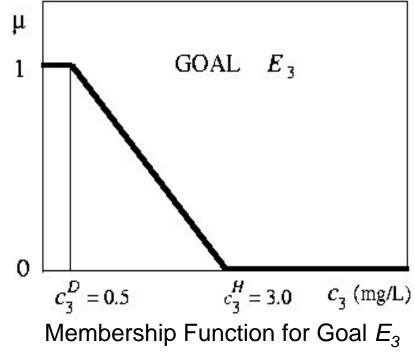

 The transfer function that expresses the DO deficit at a checkpoint in terms of the concentration of pointsource of BOD and the fraction removal levels can be obtained using the one dimensional steady state Streeter-Phelps BOD-DO equations*.

* Chapra, S.C., Surface water-quality modeling, The Mc-Graw Hill Companies Inc. 1997
Sasikumar, K., and Mujumdar, P. P., (1998) Fuzzy optimization model for water quality management of a river system, *Journal of Water Resources Planning and Management*, 124(2), 79-88.
Subimal Ghosh, H. R. Suresh and P. P. Mujumdar (2008), Fuzzy Waste Load Allocation: Application to a Case Study, *Journal of Intelligent Systems*, 17(1-3), 283-296.

Solution:

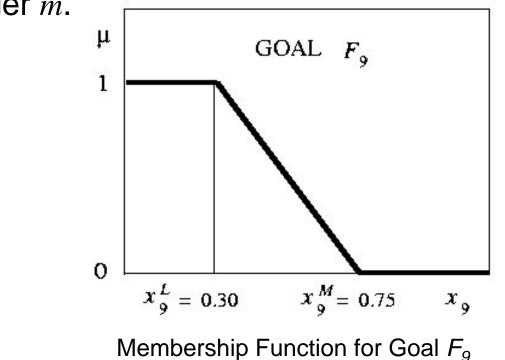
- Since only one pollutant and one water quality parameter are considered, the suffixes *i* and *n* are dropped from the constraints and OF for convenience.
- Denote the DO deficit at the water quality checkpoint *l* by C_l, and the fraction removal level for the mth discharger by x_m.

Using linear membership functions for the fuzzy goals (i.e., $\alpha_{(..)} = \beta_{(...)} = 1$).



Example – 2 (Contd.) Details of the membership functions for the fuzzy goals

For all	Goa	al <i>E_l</i>	Goal <i>F_m</i>			
Checkpoints <i>I</i> In reach r _e (1)	C _I ^H (mg/L) (2)	C _I D (mg/L) (3)	Discharger (4)	x ^L _m (5)	<i>х^м_т</i> (6)	
r ₁	3.5	0.0	D ₁	0.25	0.75	
r ₂	3.0	0.5	D ₂	0.35	0.80	
r ₃	3.5	0.0	D ₃	0.30	0.85	
r ₄	3.5	0.5	D ₄	0.35	0.75	
r ₅	3.0	0.0	D_5	0.35	0.80	
r ₆	3.0	0.5	D_6	0.25	0.90	
r ₇	4.0	1.0	D ₇	0.35	0.90	
r ₈	3.5	1.5	D ₈	0.35	0.85	
r ₉	4.0	1.5	D ₉	0.30	0.75	


Fuzzy Goals of the Pollution Control Agency

• Fuzzy Goal E_l : Make the concentration level, C_l , at the checkpoint l as close as possible to the desirable level, C_l^D so that the water quality at the checkpoint l is enhanced at l.

Fuzzy Goals of the Dischargers

• Fuzzy Goal F_m : Make the fraction removal level x_m as close as possible to the aspiration level x_m^L for the discharger *m*.

A minimal fraction removal level of 0.30 is imposed by the pollution control agency on all the dischargers . Results are as follows

Discharger	Fraction Removal Level	River Reach <i>R_e</i>	Minimum DO Concentration (mg/L)		
(1)	(2)	(3)	(4)		
D ₁	0.64	r ₁	9.89		
D ₂	0.70	r ₂	8.76		
D ₃	0.72	r ₃	8.50		
D ₄	0.66	r ₄	8.80		
D ₅	0.70	r ₅	9.17		
D ₆	0.75	r ₆	7.65		
D ₇	0.77	r ₇	6.90		
D ₈	0.74	r ₈	6.61		
D ₉	0.49	r ₉	6.07		

Fuzzy sets for reservoir storage and release targets:

- Consider that a reservoir storage volume target, T^S , is to be obtained given a minimum release target T^R , and reservoir capacity K.
- Assume that the known release and unknown storage targets must apply in each of the three seasons in a year.
- The objective will be to find the highest value of the storage target, *T*^S, that minimizes the sum of squared deviations from actual storage volumes and releases less than the minimization release target.

The optimization model is

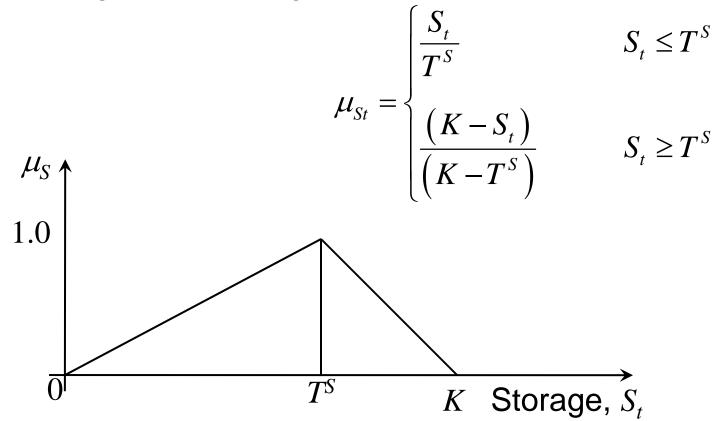
Minimize
$$D = \sum_{t=1}^{3} [(T^{s} - S_{t})^{2} + DR_{t}^{2}] - 0.001T^{s}$$

S.t.

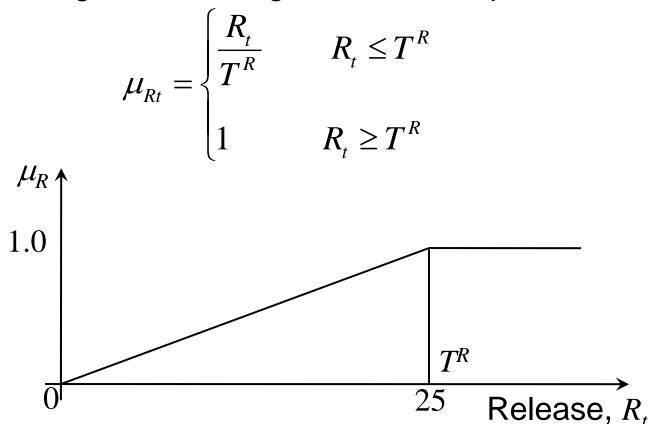
$$S_t + Q_t - R_t = S_{t+1}$$
 $t = 1, 2, 3$
 $S_t \le K$ $t = 1, 2, 3$
 $R_t \ge T^R - DR_t$ $t = 1, 2, 3$

Assume K = 20, $T^R = 25$ and the inflows Q_t are 5, 50 and 20 for time periods t = 1, 2, 3.

Solution is


D = 184.4 $T^{S} = 15.6$ $S_{1} = 19.4$ $S_{2} = 7.5$ $S_{3} = 20.0$ $R_{1} = 14.4$ $R_{2} = 27.5$ $R_{3} = 18.1$

 If the OF is changed to one of maximizing the minimum membership function value, then the new formulation is


Maximize μ_{min} = maximize minimum { μ_{St} , μ_{Rt} }

• A common lower bound is set on each membership function, μ_{St} and μ_{Rt} , and this variable is maximized.

• The variables μ_{St} are the degrees of satisfying storage volume target in the three periods t is

• The variables μ_{Rt} are the degrees of satisfying storage volume target in the three periods t is

The optimal solution is $\mu_{min} = 0.556$ $T^{\rm S} = 20.0$ $S_1 = 20.0$ $S_2 = 11.1$ $S_3 = 20.0$ $R_1 = 13.9$ $R_2 = 41.1$ $R_3 = 20.0$