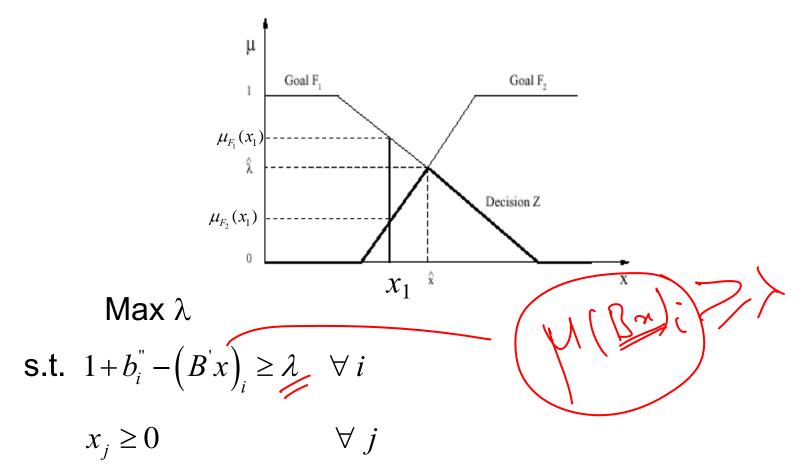


Water Resources Systems: Modeling Techniques and Analysis

Lecture - 35 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

Summary of the previous lecture

• Fuzzy optimization

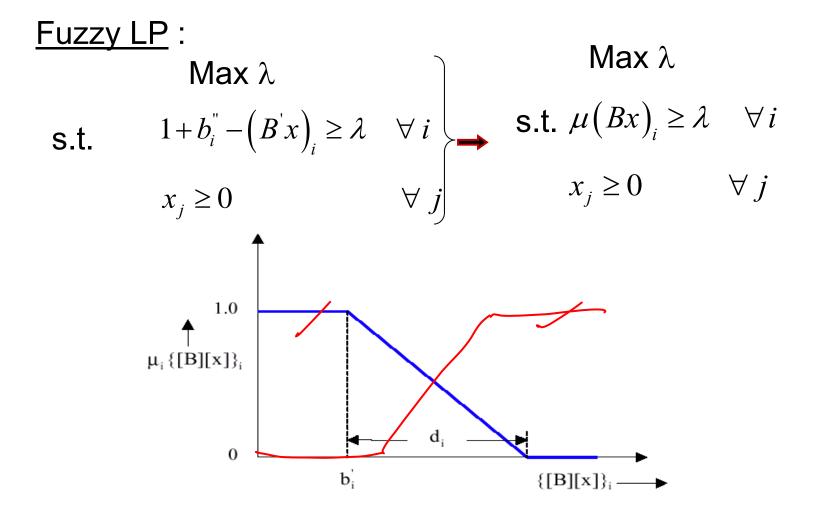


Example – 1

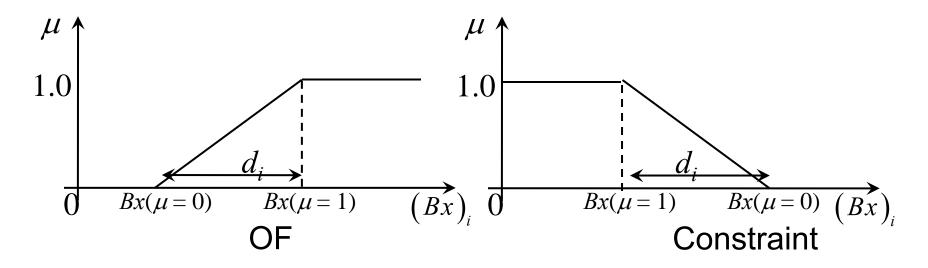
Crisp problem

Max $Z = 3x_1 + 5x_2$ s.t. $x_1 \leq 4$ $2x_2 \leq 12$ $3x_1 + 2x_2 \le 18$ $x_1 \ge 0$ $x_2 \ge 0$

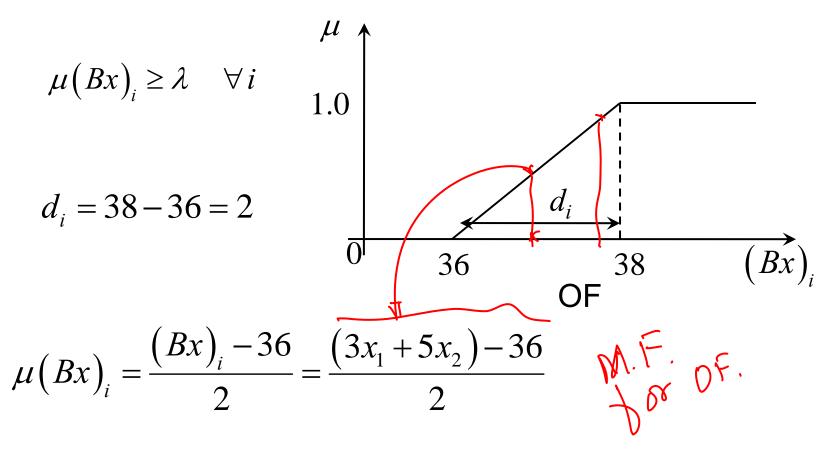
Solution : $x_1 = 2.0 ; x_2 = 6.0$ Z = 36



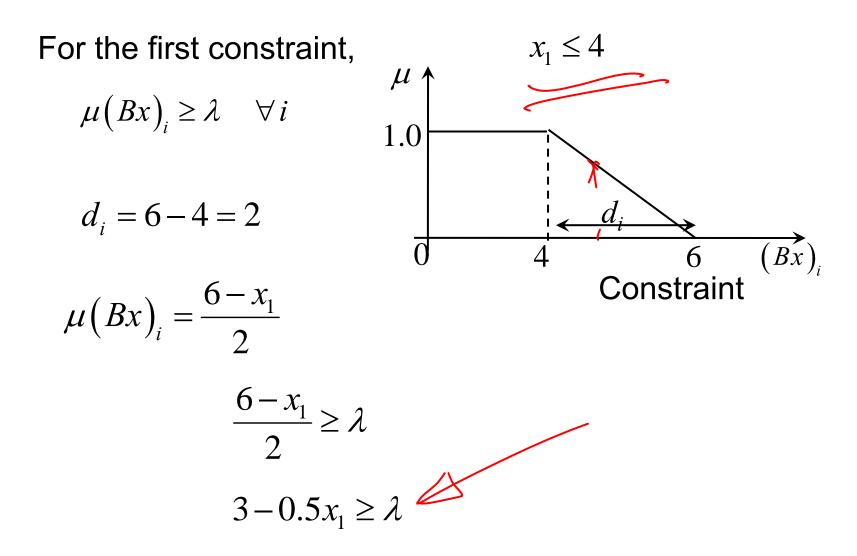
	$\mu = 0$	$\mu = 1$
O.F	36	38
Cons. 1	6	4
Cons. 2	10	6
Cons. 3	25	18

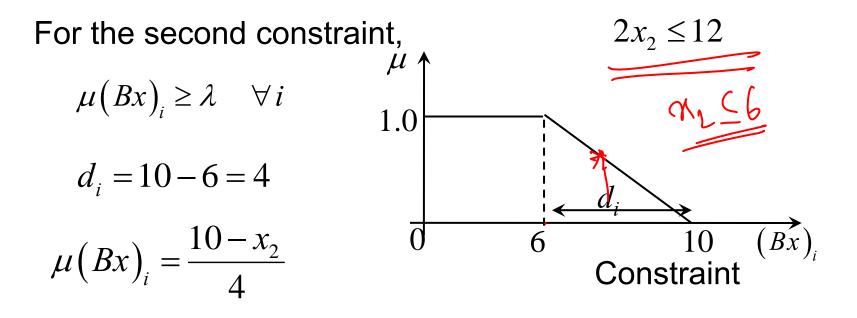


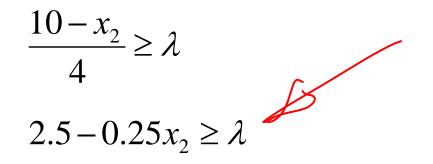
The first constraint of fuzzy LP (corresponding to O.F. of the original problem) is written as,



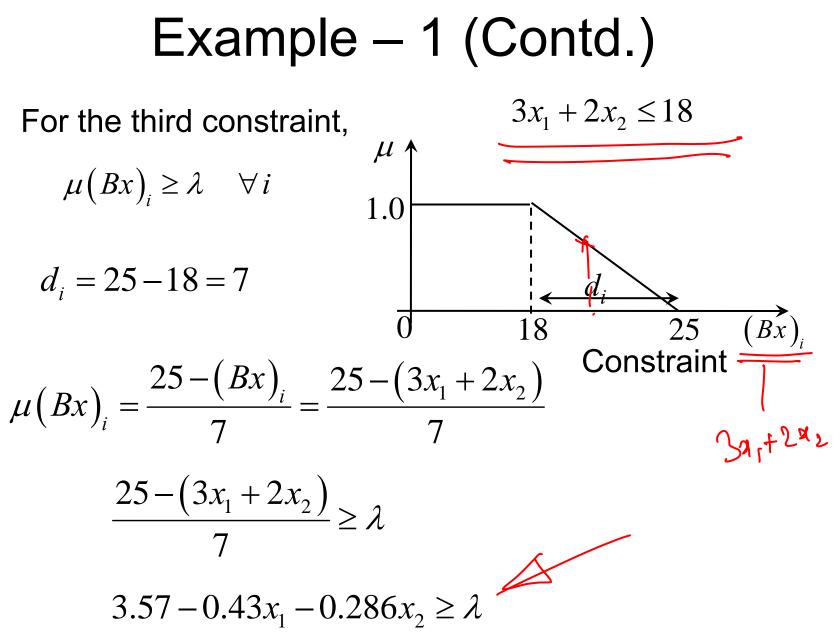
 $\mu(Bx)_i \geq \lambda$ $\frac{3x_1 + 5x_2 - 36}{2} \ge \lambda$ FUSBY Constrant FOS D.F. FOS D.F. $1.5x_1 + 2.5x_2 - 18 \ge \lambda$



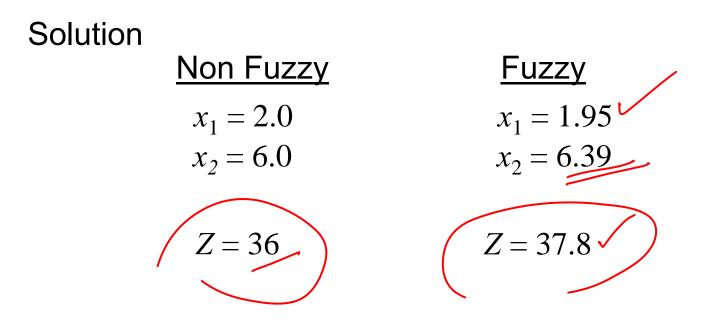




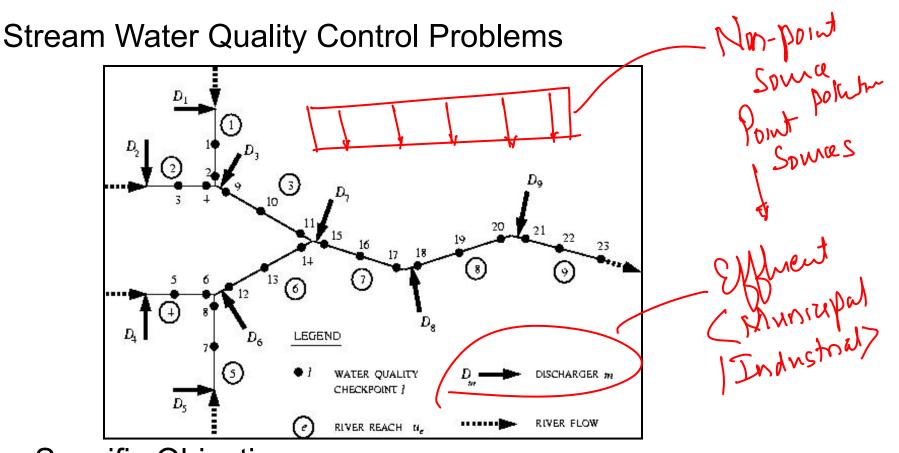
9



Crisp equivalent of fuzzy LP Max λ s.t. $1.5x_1 + 2.5x_2 - 18 \ge \lambda$ $3 - 0.5x_1 \ge \lambda$ $2.5 - 0.25 x_2 \ge \lambda$ $3.57 - 0.43x_1 - 0.286x_2 \ge \lambda$ $x_1 \ge 0; \quad x_2 \ge 0$



- Fuzzy LP allows latitude in constraints
- Instead of maximizing (or minimizing) an objective function, a level of satisfaction for permissible values is defined



Specific Objective

To obtain best compromise solutions for effluent fraction removal levels

Uncertainties due to randomness and fuzziness

- Randomness in Streamflow, Effluent Flow, Temperature and Reaction Rates
- Fuzziness due to water quality standards, goals & objectives, and nonpoint source pollution

Mathematical Concepts and Tools:

 Fuzzy Decision; Stochastic Optimization; Fuzzy Probabilities; Fuzzy Risk; Fuzzy Inference Systems (FIS)

- Concentration level of the water quality parameters *i* at the checkpoint *l* is denoted as C_{il} .
- The pollution control agency sets a desirable level, C_{il}^{D} , and a minimum permissible level, C_{il}^{L} , for the water quality parameter *i* at the checkpoint *l* ($C_{il}^{L} > C_{il}^{D}$).

Fuzzy Goals for Water Quality Management:

- The quantity of interest is the concentration level, C_{il} , of the water quality parameter, and the fraction removal level (treatment level), x_{imn} , of the pollutant.
- The quantities x_{imn} are the fraction removal levels of the pollutant *n* from the discharger *m* to control the water quality parameter *i*.

Fuzzy Goals of the Pollution Control Agency

• Fuzzy Goal E_{il} : Make the concentration level, C_{il} , of the water quality parameter *i* at the checkpoint *l* as close as possible to the desirable level, C_{il}^{D} so that the water quality at the checkpoint *l* is enhanced with respect to the water quality parameter *i*, for all *i* and *l*.

Fuzzy Goals of the Dischargers

Fuzzy Goal F_{imn}: Make the fraction removal level x_{imn} as close as possible to the aspiration level x^L_{imn} for all *i*, *m*, and *n*.

The membership function corresponding to the decision Z is given by

$$\mu_{Z}(X) = \min_{i,m,n} \left[\mu_{E_{il}}(C_{il}), \mu_{F_{imn}}(x_{imn}) \right]$$

where *X* is the space of alternatives composed of C_{il} and x_{imn} .

The corresponding optimal decision, X^* , is given by

$$\mu_{Z}\left(X^{*}\right) = \lambda^{*} = \max_{y}\left[\mu_{Z}\left(X\right)\right]$$

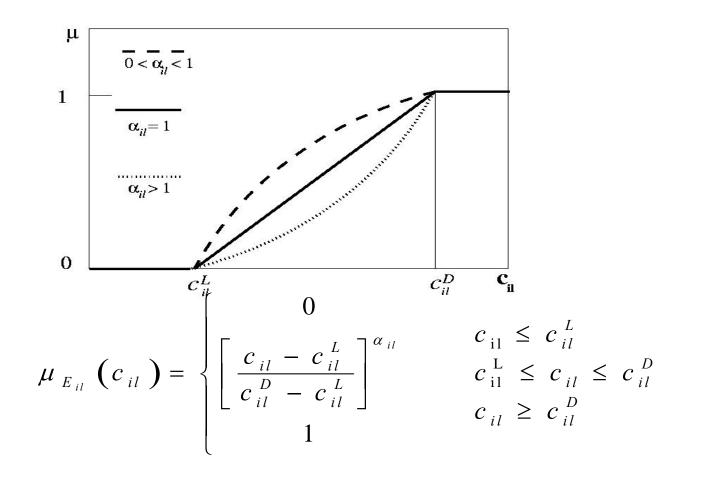
Membership Functions for the Fuzzy Goals Goal E_{il} : The membership function for the fuzzy goal E_{il} is constructed as follows.

- The desirable level, C_{il}^{D} , for the water quality parameter *i* at checkpoint *l* is assigned a membership value of 1.
- The minimum permissible level, C^{L}_{il} , is assigned a membership value of zero

$$\mu_{E_{il}} \left(c_{il} \right) = \begin{cases} 0 & c_{il} \leq c_{il}^{L} \\ \left[\frac{c_{il} - c_{il}^{L}}{c_{il}^{D} - c_{il}^{L}} \right]^{\alpha_{il}} & c_{il}^{L} \leq c_{il} \leq c_{il}^{D} \\ 1 & c_{il} \geq c_{il}^{D} \end{cases}$$

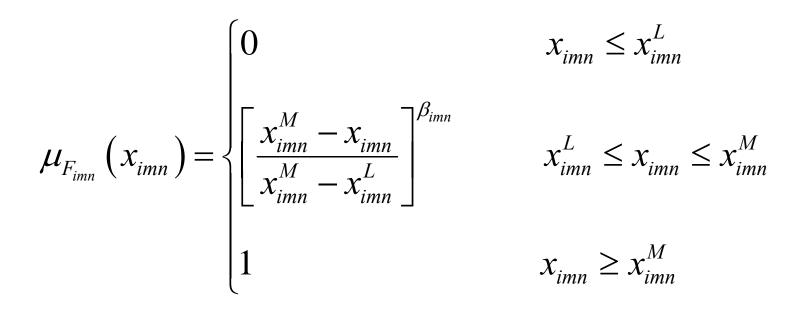
FWLAM

Fuzzy Membership Function --- PCA

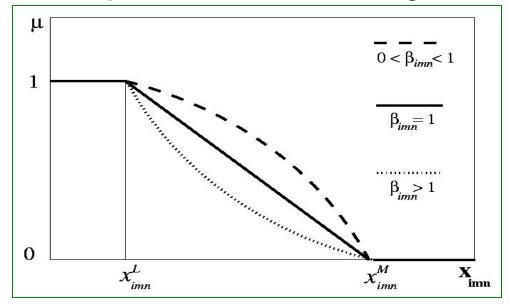


19

With a similar argument, the membership function for the goal F_{imn} is written as



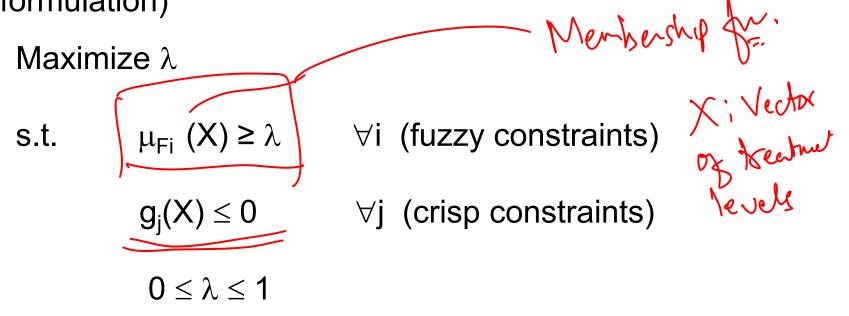
Fuzzy Membership Function -- Dischargers



$$\mu_{F_{imn}}(x_{imn}) = \begin{cases} 1 & x_{imn} - x_{imn} \\ \left[\frac{x_{imn}^{M} - x_{imn}}{x_{imn}^{M} - x_{imn}^{L}}\right]^{\beta_{imn}} & x_{imn} \leq x_{imn}^{L} \\ x_{imn} \leq x_{imn} < x_{imn}^{M} \\ 0 & x_{imn} \geq x_{imn}^{M} \end{cases}$$

21

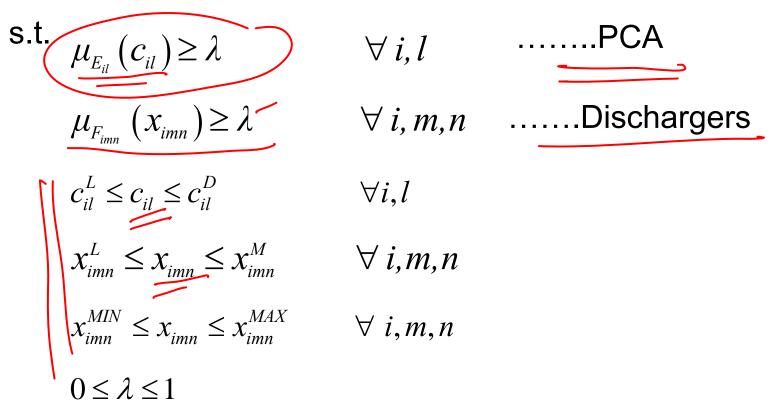
Fuzzy multiobjective optimization model (MAX-MIN formulation)



$\lambda\,$: Interpreted as the degree of goal fulfillment level

Fuzzy optimization model for FWLAM

Maximize λ .



• The concentration level, C_{il} , of the water quality parameter *i* at the checkpoint *l* can be related to the fraction removal level, x_{imn} , of the pollutant *n* from the discharger *m* to control the water quality parameter *i*, though the transfer function that may be mathematically expressed as

$$C_{il} = \sum_{m=1}^{N_d} \sum_{n=1}^{N_p} f_{ilmn}(L_{ilmn}, x_{imn}) + \sum_{p=1}^{N_t} \sum_{n=1}^{N_p} f_{ilpn}(L_{ilpn})$$

where L_{ilmn} is the concentration of the pollutant *n* prior to treatment from the discharger *m* that affects the water quality parameter *i* at the checkpoint *l*,

 L_{ilpn} is the concentration of the pollutant *n* from the uncontrollable source *p* that affect the water quality parameter *i* at the checkpoint *l*.

- The transfer functions $f_{ilmn}(\cdot, \cdot)$ and $f_{ilpn}(\cdot)$ represent the concentration levels of the water quality parameter *i* due to $L_{ilmn}(1 - x_{imn})$, and L_{ilpn} respectively
- These transfer functions can be evaluated using appropriate mathematical models that determine the spatial and temporal distribution of the water quality parameter due to the pollutants in the river system
- The solution of the optimization model are X* and λ* where X* is the set of optimal fraction removal levels, and λ* is the maximized m

 $Example-2 \\ \text{Consider a hypothetical river network as shown} \\$

