

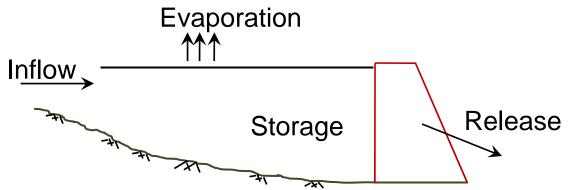
Water Resources Systems: Modeling Techniques and Analysis

Lecture - 31 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

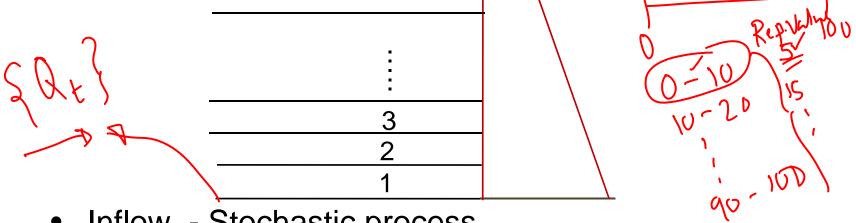
Summary of the previous lecture

- Deterministic equivalent of CCLP $F_{\mathcal{Q}_i}(q) \uparrow$ Min K $(1 - \alpha_1)$ s.t. $(D_t + b_t - b_{t-1}) \le F_{Q_t}^{-1} (1 - \alpha_1)$ $(R_t^{\max} + b_t - b_{t-1}) \ge F_{Q_t}^{-1} (\alpha_2)$ $F_{a}^{-1}(1-\alpha_{1})$ q_t Min K $\cdot \forall t$ **s.t.** $P[R_t \ge D_t] \ge \alpha_1$ $P[R_t \le R_t^{\max}] \ge \alpha_2$ $P[S_t \le K] \ge \alpha_3$ $b_{t-1} \leq K$ $b_{t-1} \ge S_{\min}$ $b_t \ge 0$ $\underline{P[S_t \ge S_{\min}]} \ge \alpha_4$ $K \ge 0$
- Examples on writing the deterministic equivalent of CCLP

STOCHASTIC DYNAMIC PROGRAMMING (SDP)



 Reservoir storage and inflow divided into discrete class intervals

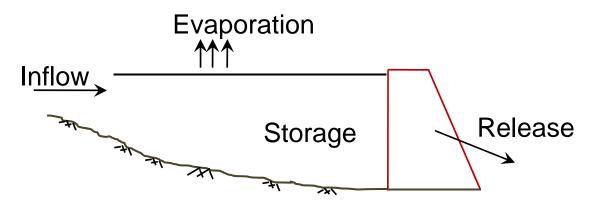


• Inflow - Stochastic process.

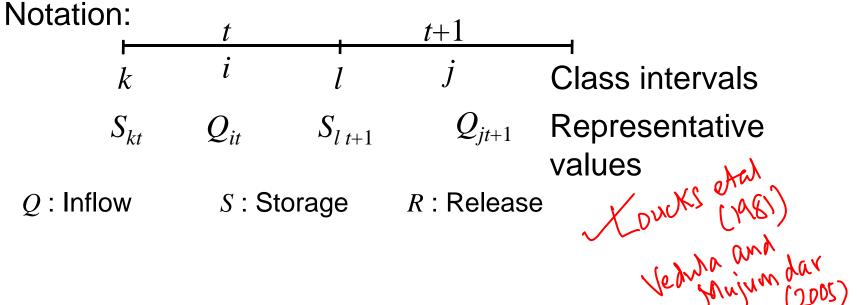
- Stage: Time period (e.g., month, week etc.) at which decisions need to be taken.
- State variables: storage at the beginning of period t and inflow during period t.
- Decision: Release from the reservoir during period *t*.
- Objective: To optimize (maximize or minimize) the expected value of a system performance measure.

For example,

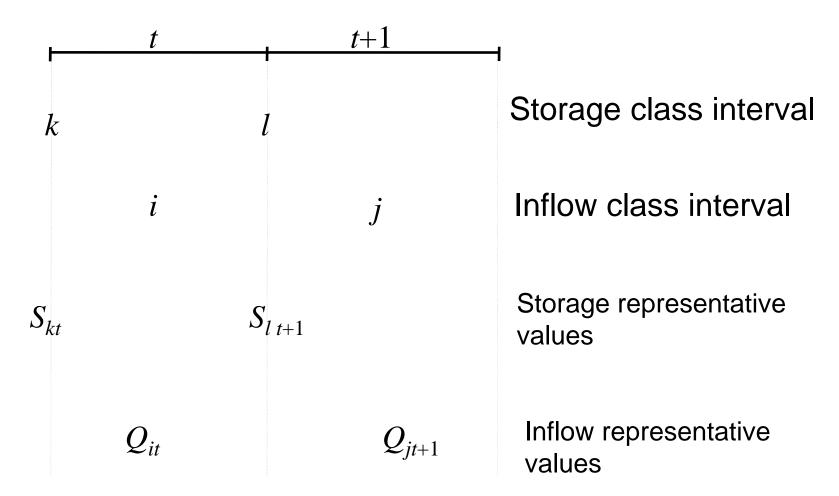
- Maximize the expected value of annual hydropower generated
- Minimize the expected value of annual flood damage.



- System performance measure is a function of release and/or storage
 - Hydropower generated
 - Crop yield achieved
 - Monitory benefits
 - Magnitude of flood mitigation etc.



- k: Class interval of storage at the beginning of period t
- *i* : Class interval of inflow during period *t*
- *l* : Class interval of storage at the beginning of period t+1
- j: Class interval of inflow during period t+1



All variables are discretised into a no. of class intervals

First order Markov chain (or single step Markov chain):

$$P[X_{t}/X_{t-1}, X_{t-2}, \dots, X_{0}] = P[X_{t}/X_{t-1}]$$

X_t : Random variable

- Inflows during time intervals ranging from 10 days to a year may be assumed to follow a single step Markov chain.
- Transition probabilities are used to measure the dependence of the inflow during period *t*+1 on the inflow during the period *t*.

• The transition probability P_{ij}^t is defined as the probability that the inflow during period t+1 will be in class interval *j*, given that the inflow during the period *t* lies in the class interval *i*,

$$P_{ij}^t = P[Q_{t+1} = j/Q_t = i]$$

where $Q_t = i$ indicates that the inflow during the period *t* belongs to the discrete class interval *i*.

• The transition probabilities are estimated from historical inflow data.

- Release during the period t is R_{kilt}
- Storage state changes because of inflow, release and evaporation.
- Inflow state changes randomly from period to period.

State transformation:

$$Representative
 $S_{lt+1} = S_{kt} + Q_{kt} - E_{klt} - R_{kilt}$$$

 E_{klt} is evaporation loss during period *t* corresponding to storage class intervals *k* and *l*.

• For given *k*, *i* and *l*, release is computed as

$$R_{kilt} = S_{kt} + Q_{kt} - E_{klt} - S_{lt+1}$$

$$S_{k-1} + I + I$$

$$S_{k-1} + I$$

$$S_{k-1} + I + I$$

$$S_{k-1} + I$$

- System performance measure: B_{kilt}
- B_{kilt} is, in general, a function of S_{kt} , R_{kilt} and S_{lt+1} For example,
 - Amount of power generated during period *t*.
 - Deficit release from target in period *t*.

