

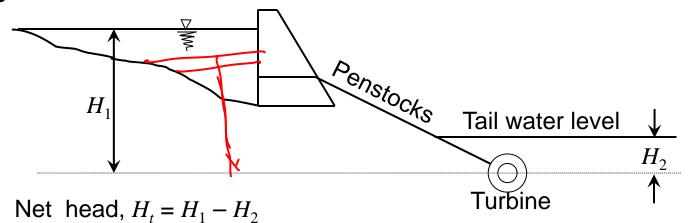
Water Resources Systems: Modeling Techniques and Analysis

Lecture - 26 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

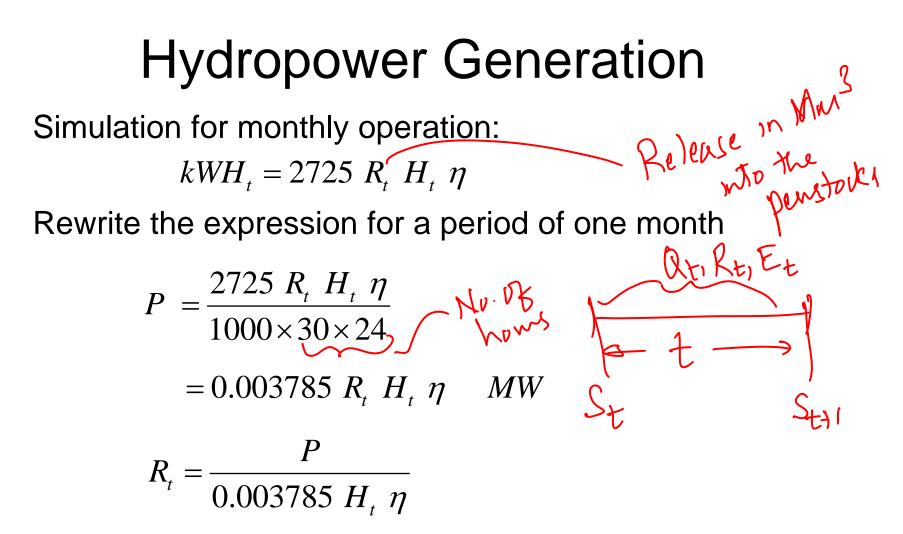
Summary of the previous lecture

• Hydropower Generation

remains constant $\forall S_t$


 $kWH_t = 2725 R_t H_t \eta$

 Firm power ; Secondary power ; Run-of-the-river power plants


 For example, a river with a minimum monthly flow of 20 Mm³ has a drop of 50 m at a site along the river. Consider the overall efficiency for power generation as 75%

Firm energy produced at that site is $kWH_t = 2725 R_t H_t \eta$ $= 2725 \times 20 \times 50 \times 0.75$ = 2043750 kWHWW = 2.044 GWH (giga watt hour)

Simulation of reservoir operation for hydropower generation:

- The data required is
 - The inflow series at the reservoir
 - Storage-elevation-area relationships
 - Power plant efficiency.

 R_t is release to penstock in Mm³ in period t, *P* is power in MW, H_t is the net head in m in period t and η is plant efficiency.

Hydropower Generation - Area of Water Sprend

Reservoir storage continuity:

$$\underline{S_{t+1}} = \underline{S_t} + \underline{Q_t} - \underline{E_t} - \underline{R_t} - Spill_t$$

where

 S_t is the storage at the beginning of the period t

 Q_t is the reservoir inflow during the period t

 R_t is the release required in the period t to generate the specified power corresponding to the net head, resulting from the average of S_t and S_{t+1} .

 E_t is the evaporation loss in the period t corresponding to water spread area at the average storage.

 $Spill_t$ is the spill (overflow) during the period t

Procedure for obtaining H_t , R_t , E_t and S_{t+1} iteratively:

- 1. Assume average storage $\overline{S}_t = S_t$ (Known)
- 2. Corresponding to \overline{S}_t , obtain net head, H_t , and water spread area, A_t , from storage-elevation-area relationships.
- 3. Determine the release, R_t , required for generating the specified power, P, from R_t , E_t , H_t

$$R_t = \frac{P}{0.003785 \ H_t \ \eta}$$

- St sufering on St.
- 4. Obtain the evaporation loss from $E_t = e_t A_t$ where e_t is the evaporation rate in period *t* and A_t corresponds to the storage \overline{S}_t .

5. Get the end of period storage,

 $S_{t+1} = S_t + Q_t - E_t - R_t \quad \text{if } S_{t+1} < \text{reservoir capacity, } K.$ = K, otherwise 6. Get the average storage, $\overline{S}_t^* = \frac{S_t + S_{t+1}}{2}$ 7. If \overline{S}_t^* is nearly equal to \overline{S}_t , the computed values of H_t , R_t , E_t and S_{t+1} are acceptable.

Else, set $\overline{S}_t = \overline{S}_t^*$ and go to step 2; repeat steps 2 to 7 until the computed values of H_t , R_t , E_t and S_{t+1} are acceptable.

Example – 2

Simulate the reservoir operation for hydropower generation with the following data:

The monthly inflows (Q_t) in Mm³ and evaporation rate (e_t) in cm for the reservoir are as follows

	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
Q_t	190.76	433.76	212.97	146.89	209.72	42.92	28.02
e_t	11	9	8	9	8	7	8
	Jan.	Feb.	Mar.	Apr.	Мау		
Q_t	11.95	7.07	9.25	9.89	65.16		
e_t	8	10	13	14	11		

Reservoir capacity, $K = 1226 \text{ Mm}^3$	
Minimum power desired in a month,	
$P = \underline{73.5 \text{ MW}}$	
Plant efficiency = 81.54% Initial storage = <u>824.63</u> Mm ³ Tailrace water level = 47 m	

		-		
Capacity (Mm ³)	Elevation (m)	n Area (Mm²		
204.5	280	8.4		
248.82	285	10		
302.82	290	11.6		
351.62	294	12.8		
398.52	297.5	14		
434.77	34.77 300			
500.94	304.25	15		
3 582.02	309	16.14	ŀ	
686.36	314.5	19.94	19.94	
868.85	323	23		
1013.03	329	25.06	5	
1189.68	335.75	27.28	3	
1226	338	28		

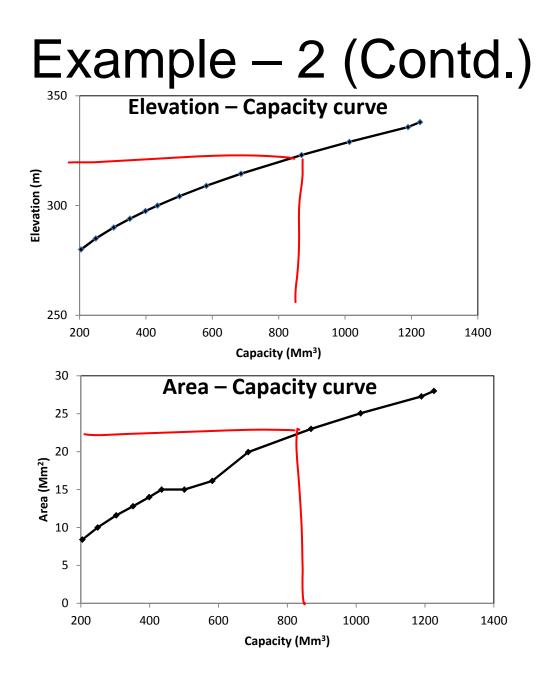


Illustration of calculations for June month (t = 1):

- Initial storage, $S_1 = 824.63 \text{ Mm}^3$; Assume $\overline{S}_t = 824.63 \text{ Mm}^3$
- Inflow for June month = 190.76 Mm^3
- From the Storage elevation area data corresponding to the initial storage, $S_1=824.63$ Mm³, total head = 320.84 m and $A_t = 22.26$ Mm² Mm³
- Net head, $H_t = 320.84 47 = 273.94$ m

• For
$$P = 73.5$$
 MW and $\eta = 81.54\%$,
 $R_t = \frac{P}{0.003785 H_t \eta}$

$$=\frac{73.5}{0.003785\times273.94\times0.8154}=86.935\,Mm^3$$

- Evaporation rate, e_t for June month = 11 cm = 0.11m
- Evaporation loss corresponding to $e_t = 0.11$ m and $A_t = 22.26$ Mm² is

 $E_t = e_t A_t = 0.11 \text{ x } 22.26 = 2.003 \text{ Mm}^3$

• End of period storage, S_{t+1} is calculated as

$$S_{t+1} = S_t + Q_t - E_t - R_t$$

$$= 824.63 + 190.76 - 2.003 - 86.935$$

$$= \underbrace{926.45 \text{ Mm}^3}_{t+1} \leq K (\underbrace{1226 \text{ Mm}^3}_{t})$$

Average storage, $\overline{S}_t^* = \frac{S_t + S_{t+1}}{2} = \frac{824.63 + 926.45}{2} = 875.5$
 $\overline{S}_t^* \neq \overline{S}_t$

13

Second iteration for June month:

- St = 875-S • Corresponding to $\overline{S}_{t}^{*} = 875.5 \text{ Mm}^{3}$, total head = 323.3 m and A_t = 23.1 Mm²
- Net head, $H_t = 323.3 47 = 276.3$

• For
$$P = 73.5$$
 MW and $\eta = 81.54\%$,

$$R_t = \frac{73.5}{0.003785 \times 276.3 \times 0.8154} = 86.2 \, Mm^3$$

Evaporation loss is

$$E_t = e_t A_t = 0.11 \text{ x } 23.1 = 2.08 \text{ Mm}^3$$

End of period storage, S_{t+1} is

$$S_{t+1} = 824.63 + 190.76 - 2.08 - 86.2 = 927.11 Mm^{3}$$

 $S_{t+1} < K (1226 Mm^{3})$

Average storage,
$$\overline{S}_{t}^{*} = \frac{875.5 + 927.11}{2} = 901.3 \text{ Mm}^{3}$$

 $\overline{S}_{t}^{*} \neq \overline{S}_{t}$ Set $\overline{S}_{t}^{*} = 901.3 \text{ Mm}^{3}$

Other iterations are performed in the same line for June month until

$$\overline{S}_t^* = \overline{S}_t =$$

Final solution for June month is s Convergena

$$R_t = 85.53 \text{ Mm}^3$$

 $H_t = 278.45 \text{ m}$
 $E_t = 2.15 \text{ Mm}^3 \text{ and}$
 $S_{t+1} = 927.72 \text{ Mm}^3$

End-of-storage for June month is initial storage for July month.

 $S_2 = 927.72 \text{ Mm}^3$

Same procedure is followed for obtaining the H_t , R_t , E_t and S_{t+1} values for July month.

Final solution for July month (t = 2) is

 $R_t = 81.84 \text{ Mm}^3$ $H_t = 291 \text{ m}$ $E_t = 2.52 \text{ Mm}^3$ and $S_{t+1} = 1226 \text{ Mm}^3$

 S_{t+1} E_t Q_t S_{t} R_{t} Spill, H_{\star} e_t A_{t} Month Mm³ Mm³ Mm² Mm³ Mm³ Mm³ Mm³ cm m 190.76 11 824.63 278.45 23.84 85.53 2.15 0 927.72 Jun 1226.00 433.76 927.72 291.00 28.00 81.84 2.52 47.32 Jul 9 291.00 2.24 1226.00 212.97 8 1226.00 28.00 81.84 128.89 Aug Sep 146.89 9 1226.00 291.00 28.00 81.84 2.52 62.53 1226.00 209.72 291.00 2.24 125.64 1226.00 Oct 8 1226.00 28.00 81.84 42.92 7 1226.00 288.55 27.21 82.53 1.91 1184.48 Nov 0 28.02 1184.48 286.36 83.16 2.12 1127.22 Dec 8 26.50 0 11.95 8 1127.22 283.53 25.56 83.99 2.05 1053.13 Jan 0 Feb 7.07 10 1053.13 280.33 24.49 84.95 2.45 0 972.80 9.25 13 972.80 277.01 23.35 85.97 3.03 893.04 Mar 0 9.89 14 893.04 273.39 22.06 87.11 3.09 0 812.73 Apr 65.16 11 812.73 272.24 21.64 87.48 2.38 788.03 May 0

Primary and additional power:

- When the power draft is adequate to generate the specified power *P*, the primary power is equal to *P* itself.
- When the power draft is less than that required to generate the power *P*, the primary power *P* is

 $P = 0.0030864 R_t H_t$

• The additional power is generated only when the reservoir spills.

• The spill during a month is computed based on end-of-the-period storage as,

 $Spill_{t} = 0 \qquad \text{if} \quad S_{t} + Q_{t} - E_{t} - R_{t} \leq K$ $= S_{t} + Q_{t} - E_{t} - R_{t} - K \qquad \text{otherwise}$

- When there is a spill during a period, the end-ofthe-period storage, S_{t+1} , is set to K, after computing the spill.
- The additional power is computed based on the spill with net head corresponding to full reservoir level as

 $P' = 0.0030864 Spill_{t} H_{max}$

 H_{max} is the net head corresponding to full reservoir level

In the previous example, the spill occurs in the months of Jul., Aug., Sep. and Oct.

 $H_{max} = 291 \text{ m}$

Month	$S_t + Q_t - E_t - R_t$	K	Spill _t	Additional power
	Mm ³	Mm ³	Mm ³	MW
Jul	1276.64	1226	47.32	42.50
Aug	1354.89	1226	128.89	115.76
Sep	1288.53	1226	62.53	56.16
Oct	1351.64	1226	125.64	112.84

 $P' = 0.0030864 \ Spill_t \ H_{max}$