

Water Resources Systems: Modeling Techniques and Analysis

Lecture - 25 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

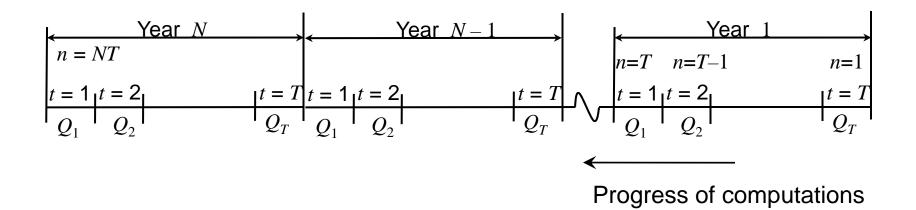
Summary of the previous lecture

• Multi-reservoir operation
Max
$$\sum_{i=1}^{3} \sum_{t=1}^{T} \left[B_{t}^{1} R_{t}^{i} + B_{t}^{2} \left(K_{i} - S_{t}^{i} \right) + B_{t}^{3} S_{t}^{i} \right]$$
s.t.
$$S_{t+1}^{i} = S_{t}^{i} + Q_{t}^{i} - E_{t}^{i} - R_{t}^{i} - O_{t}^{i} \quad \forall t, i = 1, 2$$

$$S_{t+1}^{i} = S_{t}^{i} + Q_{t}^{i} + \alpha_{1} R_{t}^{1} + \alpha_{2} R_{t}^{2} - E_{t}^{i} - R_{t}^{i} - O_{t}^{i}$$

$$\forall t, i = 3$$

$$S_{t}^{i} \leq K_{i} \quad i = 1, 2, 3; \quad \forall t$$


$$K_{i} - S_{t}^{i} \geq F_{\min}^{i} \quad i = 1, 2, 3; \quad \forall t \in \text{Flood season}$$

$$R_{t}^{i} \leq R_{\max}^{i} \quad ; \quad R_{t}^{i} \geq 0 \quad ; \quad S_{t}^{i} \geq 0 \quad \forall t$$

$$S_{T+1}^{i} = S_{1}^{i}$$

• Stationary Policy Using DP

Stationary Policy Using DP

- State variable storage at the beginning of the time period t, S_t
- Computations start at some distant year in the future in the last time period.
- The computations are carried out until the solution reaches a steady state.

Stationary Policy Using DP

converges to a constant value, for all S_t , where $f_t^n(S_t)$ is the accumulated net return up to stage n.

Stationary Policy Using DP

The general recursive equation is

$$f_{t}^{n}(S_{t}) = \max \left[B_{t}(R_{t}, S_{t}) + f_{t+1}^{n-1}(S_{t} + Q_{t} - R_{t}) \right]$$

$$0 \le R_{t} \le S_{t} + Q_{t}$$

$$S_{t} + Q_{t} - R_{t} \le K$$

$$f_{t} = P_{t} e^{-R_{t}} \le K$$

$$f_{t} = P_{t} e^{-R_{t}}$$

++1

where $B_t(S_t, R_t)$ is the OF value in period *t* for specified storage, S_t , at the beginning of the period t, and R_t , the release during period *t*.

K is the known reservoir capacity and

 Q_t is the inflow during period t.

Example – 1

Inflows during four seasons to a reservoir with storage capacity of 4 units are 2, 1, 3 and 2 units resp.

Release from the reservoir during the season results in the following benefits which are same for all the

four seasons.

Release	Benefits
0	-100
1	250
2	320
3	480
4	520
5	520
6	410
7	120

Refer to Lectures 16 and 17 of this course where the problem is solved over a time horizon of one vear

$$S_{1} = 0 \qquad \begin{array}{c|c} t = 1 & t = 2 & t = 3 & t = 4 \\ \hline n = 4 & n = 3 & n = 2 & n = 1 \\ S_{2} & S_{3} & \overbrace{S_{4}}{} \\ \end{array} \qquad \begin{array}{c|c} r = 4 & n = 3 & n = 2 & n = 1 \\ \hline S_{2} & S_{3} & \overbrace{S_{4}}{} \\ \end{array} \qquad \begin{array}{c|c} r = 1 & r = 2 & r = 4 \\ \hline r = 1 & r = 1 & r = 1 \\ \hline S_{2} & S_{3} & \overbrace{S_{4}}{} \\ \end{array} \qquad \begin{array}{c|c} r = 1 & r = 2 & r = 4 \\ \hline S_{2} & S_{3} & \overbrace{S_{4}}{} \\ \end{array} \qquad \begin{array}{c|c} r = 1 & r = 2 & r = 4 \\ \hline S_{2} & S_{3} & \overbrace{S_{4}}{} \\ \end{array} \qquad \begin{array}{c|c} r = 1 & r = 2 & r = 4 \\ \hline S_{2} & S_{3} & \overbrace{S_{4}}{} \\ \end{array} \qquad \begin{array}{c|c} r = 1 & r = 2 & r = 1 \\ \hline S_{2} & S_{3} & \overbrace{S_{4}}{} \\ \end{array} \qquad \begin{array}{c|c} r = 1 & r = 2 & r = 1 \\ \hline S_{2} & S_{3} & \overbrace{S_{4}}{} \\ \end{array} \qquad \begin{array}{c|c} r = 1 & r = 2 & r = 1 \\ \hline S_{2} & S_{3} & \overbrace{S_{4}}{} \\ \end{array} \qquad \begin{array}{c|c} r = 1 & r = 2 & r = 1 \\ \hline S_{1} & F_{2} & F_{3} & F_{3} \\ \end{array} \qquad \begin{array}{c|c} r = 1 & r = 2 & r = 1 \\ \hline S_{1} & F_{2} & F_{3} & F_{3} \\ \end{array} \qquad \begin{array}{c|c} r = 1 & r = 2 & r = 1 \\ \hline S_{1} & F_{2} & F_{3} & F_{3} \\ \end{array} \qquad \begin{array}{c|c} r = 1 & r = 2 & r = 1 \\ \hline S_{1} & F_{2} & F_{3} & F_{3} \\ \end{array} \qquad \begin{array}{c|c} r = 1 & r = 2 & r = 1 \\ \hline S_{1} & F_{2} & F_{3} & F_{3} \\ \end{array} \qquad \begin{array}{c|c} r = 1 & r = 1 \\ \hline S_{1} & F_{3} & F_{3} & F_{3} \\ \end{array} \qquad \begin{array}{c|c} r = 1 & r = 1 \\ \hline S_{2} & F_{3} & F_{3} & F_{3} \\ \end{array} \qquad \begin{array}{c|c} r = 1 & r = 1 \\ \hline S_{2} & F_{3} & F_{3} & F_{3} \\ \end{array} \qquad \begin{array}{c|c} r = 1 & r = 1 \\ \hline S_{2} & F_{3} & F_{3} & F_{3} \\ \end{array} \qquad \begin{array}{c|c} r = 1 & r = 1 \\ \hline S_{2} & F_{3} & F_{3} & F_{3} \\ \end{array} \qquad \begin{array}{c|c} r = 1 & r = 1 \\ \hline S_{2} & F_{3} & F_{3} & F_{3} \\ \end{array}$$

Stage 1: Stage 2: $Q_3 = 3$ t = 3 and n = 2 $Q_4 = 2$ t = 4 and n = 1 $f_4^1(S_4) = \text{Max} | B_4(R_4) |$ $f_3^2(S_3) = \text{Max}\left[B_3(R_3) + f_4^1(S_3 + Q_3 - R_3)\right]$ $0 \leq R_{4} \leq (S_{4} + Q_{4})$ $0 \leq R_3 \leq (S_3 + Q_3)$ $S_4 + Q_4 - R_4 \leq 4$ $S_3 + Q_3 - R_3 \le 4$

For exa	ample, S	Stage-2 c	calculations	Q_3 :	= 3 t = 3 a	and $n =$	2
S ₃	R_3	$B_{3}(R_{3})$	$S_3 + Q_3 - R_3$	$f_4^1(S_3+Q_3-R_3)$	$B_3(R_3) + f_4^1(S_3 + Q_3 - R_3)$	$f_3^2(S_3)$	R_3^*
	1	250	4	520	770		
	2	320	3	520	840		
2	3	480	2	520	1000	1000	3, 4
	4	520	1	480	1000		
	5	520	0	320	840		
	2	320	4	520	840		
	3	480	3	520	1000		
3	4	520	2	520	1040	1040	4
	5	520	1	480	1000		
	6	410	0	320	730		
	3	480	4	520	1000		
	4	520	3	520	1040		
4	5	520	2	520	1040	1040	4, 5
	6	410	1	480	890		
	7	120	0	320	440		

Refer to Lectures 16 and 17 of this course

Year 1

t = 4	$Q_{t} = 2$
$f_4^{1}(S_4)$	R_4^*
320	2
480	3
520	4
520	4, 5
520	4, 5
	$ f_4^{-1}(S_4) 320 480 520 520 520 $

n = 2	t = 3	$Q_t = 3$
S_3	$f_{3}^{2}(S_{3})$	R ₃ *
0	800	2, 3
1	960	3
2	1000	3, 4
3	1040	4
4	1040	4, 5

Year 1

n = 3	t = 2	$Q_{t} = 1$
S_2	$f_{2}^{3}(S_{2})$	R ₂ *
0	1050	1
1	1210	1
2	1280	2, 3
3	1440	3
4	1480	3, 4

n = 4	t = 1	$Q_t = 2$
S ₁	$f_1^4(S_1)$	R ₁ *
0	1460	1
1	1530	1, 2, 3
2	1690	1, 2
3	1760	2, 3
4	1920	3

Year 2

<u>n = 5</u>	t = 4	$Q_t = 2$
S_4	$f_4^{5}(S_4)$	R ₄ *
0	1780	1, 2
1	1940	1, 3
2	2010	1, 2, 3
3	2170	1, 3
4	2240	2, 3

n = 7	t = 2	$Q_t = 1$
S_2	$f_2^{7}(S_2)$	R_2^*
0	2510	1
1	2670	2
2	2740	1, 2, 3
3	2900	3
4	2970	1, 3

n = 6	t = 3	$Q_t = 3$
S_3	$f_{3}^{6}(S_{3})$	R ₃ *
0	2260	1, 2, 3
1	2420	1, 3
2	2490	1, 2, 3
3	2560	2, 3
4	2720	3

n = 8	t = 1	$Q_t = 2$
S ₁	$f_1^{8}(S_1)$	R ₁ *
0	2920	1
1	2990	1, 2, 3
2	3150	1, 3
3	3220	1, 2
4	3380	3

Year 5

<u>n = 17</u>	t = 4	$Q_t = 2$
S_4	$f_4^{17}(S_4)$	R ₄ *
0	6160	1, 2
1	6320	1, 3
2	6390	1, 2, 3
3	6550	1, 3
4	6620	2, 3

n = 19	t = 2	$Q_t = 1$
S ₂	$f_2^{19}(S_2)$	R_2^*
0	6890	1
1	7050	1
2	7120	1, 2, 3
3	7280	1, 3
4	7350	1, 2, 3

n = 18	t = 3	$Q_t = 3$	
S ₃	$f_3^{18}(S_3)$	R ₃ *	
0	6640	1, 2, 3	
1	6800	1, 3	
2	6870	1, 2, 3	
3	7030	3	
4	7100	3	

n = 20	t = 1	$Q_t = 2$
S ₁	$f_1^{20}(S_1)$	R ₁ *
0	7300	1
1	7370	1, 2, 3
2	7530	1, 3
3	7600	1, 2
4	7760	3

	Example – 1 (Contd.)							
С	heck fo	r steady s	state:		`		10	50
-	<u>n = 15</u>	(t = 2)	Q _t = 1	_	n = 19	(t = 2)	$Q_{t} = 1$	146
-	S ₂	$f_2^{15}(S_2)$	R_2^*	_	S_2	$f_2^{19}(S_2)$	R_2^*	
-	0	5430	1	_	0	6890	1	7120
-	1 1	5590	1	_	1	7050	1	460
-	2	5660	1, 2, 3	_	2	712Ò	1, 2, 3	1460
_	3	5820	1, 3	_	3	7280	1, 3	
_	4	5890	1, 2, 3	_	4	7350	1, 2, 3	
		\frown				\frown		
_	n = 16	(t=1)	Q _t = 2	_	n = 20	t = 1	$Q_{t} = 2$	
_	S ₁	$f_1^{16}(S_1)$	R_1^*	_	S ₁	$f_1^{20}(S_1)$	R_1^*	1270
_	0	5840	1	_	0	7300	1	7-210
_	1	5910	1, 2, 3	_	1	7370	1, 2, 3	STO
-	2	6070	1, 3	_	2	7530	1, 3	14
-	3	6140	1, 2	_	3	7600	1, 2	
-	4	6300	3	-	4	7760	3	

Check for steady state:

$$\left[f_t^{n+T}\left(S_t\right) - f_t^n\left(S_t\right)\right]$$

For example, n = 15, n+T = 15+4 = 19, t = 2

$$\left[f_{2}^{19}\left(S_{t}\right) - f_{2}^{15}\left(S_{t}\right)\right] = 7050 - 5590 = 1460$$

For S_t = 1

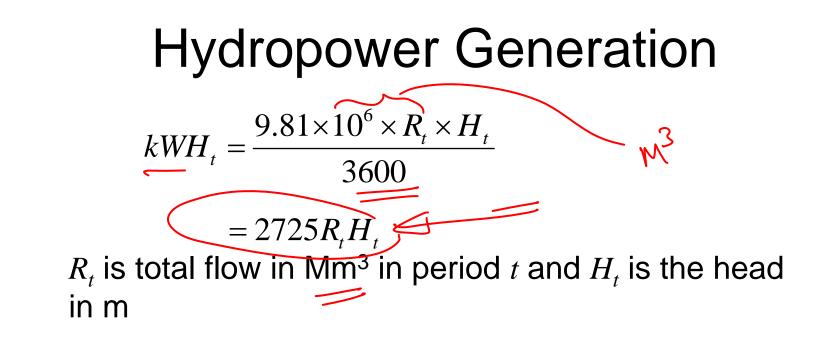
$$\left[f_{2}^{19}\left(S_{t}\right) - f_{2}^{15}\left(S_{t}\right)\right] = 7280 - 5820 = 1460$$

For S_t = 3

Verify that this condition for steady state is satisfied for all time periods, t, and for all states, S_t .

HYDROPOWER GENERATION

• The kinetic energy produced by 1 m³ of water falling through a distance of 1 m is


 $\rho gH = 1000 \times 9.81 \times 1$

=9810 N-m

 ρ is density of water (1000 kg/ m³) g is acceleration due to gravity (9.81 m/s²) H is the height from which the water falls in m

- The energy generated per second is called as power (9810 watts).
- A discharge of 1 m³/sec produces a power of 9810 watts at a head of 1 m.
- An average flow of q_t m³/sec, falling through a height of H_t m continuously in a period t will yield power of 9810 $q_t H_t$ watts (or 9.81 $q_t H_t$ kilowatts).
- General unit for power is kilowatt-hour

• The equation assumes 100% conversion of energy.

$$kWH_t = 2725 R_t H_t \eta$$

is overall efficiency

η

- Firm power: The amount of power that can be generated with certainty without interruption at site.
- The corresponding energy is Firm energy.
- Firm power can be produced with 100% reliability all the time.
- Secondary power: The power that can be generated more than 50% of time.
- Run-of-the-river power plants are those which produce power by using water directly without any requirements for water storage.

For example, a natural drop in the channel.

- The head available is nearly constant throughout the year and hence flow rate determines the generated power.
- Firm power corresponds to the minimum flow at that site.
- Major power plants accompany a storage reservoir.
- The head, flow and storage are all interdependent.
- For obtaining firm energy at a reservoir, the flows must be routed through the reservoir, simulating the energy production from period to period.

 For example, a river with a minimum monthly flow of 20 Mm³ has a drop of 50 m at a site along the river. Consider the efficiency as 75%

Firm energy produced at that site is $kWH_t = 2725 R_t H_t \eta$ $= 2725 \times 20 \times 50 \times 0.75$

 $= 2043750 \ kWH$

= 2.044 *GWH* (giga watt hour)