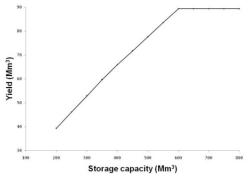


Water Resources Systems: Modeling Techniques and Analysis


Lecture - 23

Course Instructor: Prof. P. P. MUJUMDAR

Department of Civil Engg., IISc.

Summary of the previous lecture

Storage yield function

Mixed integer LP formulation for maximizing yield

Maximize R

s.t.

$$(1-a_t) S_t + Q_t - L_t - R - Spill_t = (1+a_t) S_{t+1}$$

$$Spill_t \leq \beta_t M$$

$$\beta_t \leq \frac{S_{t+1}}{K}$$

$$\beta_t \text{ is integer } \leq 1$$

$$S_t \leq K$$
and $S_{T+1} = S_1$

Introduction to reservoir operation

Standard Operating Policy

- Along OA: Release = water available.
- Along AB : Release = demand.
- Up to A: Reservoir is empty after release.
- At B and beyond: Reservoir is full after release.
- Along BC : Release = demand + excess water above capacity (spill).

Standard Operating Policy

- The release in any time period = S+Q or D whichever is less as long as availability does not exceed D+K.
- Once the availability exceeds D+K, release = demand + excess availability over capacity.
- Note that releases made as per SOP are not necessarily optimal releases.
- For highly stressed systems, SOP performs poor in terms of distributing deficits across the periods in a year.

Standard Operating Policy

The SOP is expressed as

The SOP is expressed as
$$R_t = D_t \quad \text{if} \quad S_t + Q_t - E_t \ge D_t$$
$$= S_t + Q_t - E_t \quad \text{otherwise}$$

$$O_t = (S_t + Q_t - E_t - D_t) - K$$
 if positive

$$= 0$$
 otherwise

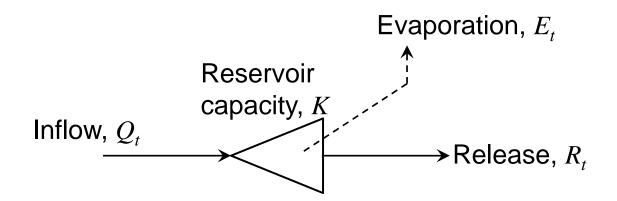
$$S_{t+1} = S_t + Q_t - E_t - R_t - O_t$$

$$S_{t+1} = K$$
 if $O_t > 0$ R_t is the release during the period t

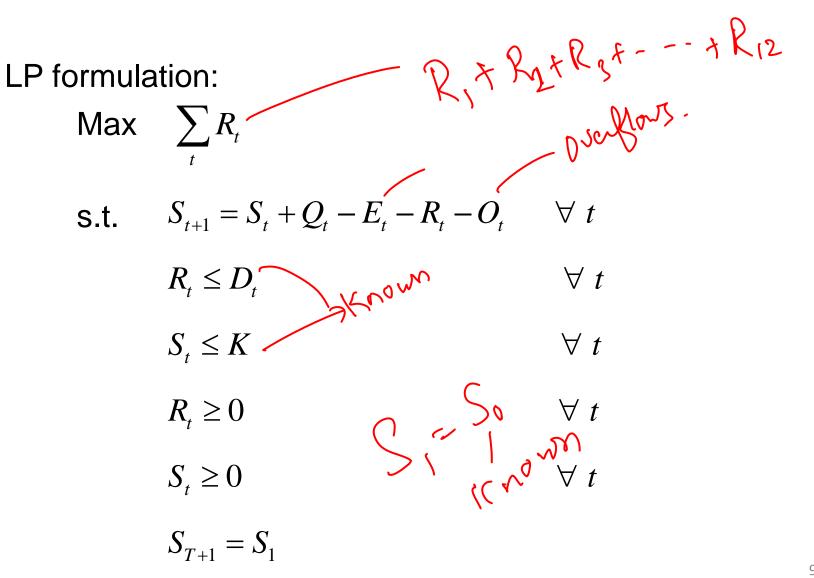
- S_t is the storage at the beginning of the period t
- Q_t is the inflow during the period t
- D_t is the demand during the period t
- E_t is the evaporation loss during the period t
- O_t is the spill (overflow) during the period t

Example – 1

The monthly inflows (Q_t) and demands (D_t) and evaporation (E_t) in Mm³ for a reservoir with a capacity of 350 Mm³ are given below


	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
Q_t	70.61	412.75	348.40	142.29	103.78	45.00	19.06
D_t	51.68	127.85	127.85	65.27	27.18	203.99	203.99
E_t	10	8	8	8	6	6	5
	Jan.	Feb.	Mar.	Apr.	May		

	Jan.	Feb.	Mar.	Apr.	May
Q_t	14.27	10.77	8.69	9.48	18.19
D_{t}	179.47	89.76	0	0	0
E_{t}	5	6	8	8	10


Initial storage, $S_1 = 200 \text{ Mm}^3$

Example 1 (Contd.)

							-
Q_t	D_t	E_t	S_t	$S_t + Q_t - E_t$	R_t	O_t	S_{t+1}
70.61	51.68	10	200	260.61	51.68	0	208.93
412.75	127.85	8	208.93	613.68	127.85	135.83	350
348.4	127.85	8	350	690.4	127.85	212.55	350
142.29	65.27	8	350	484.29	65.27	69.02	350
103.78	27.18	6	350	447.78	27.18	70.6	350
45	203.99	6	350	389	203.99	0	185.01
19.06	203.99	5	185.01	199.07	199.07	0	0
14.27	179.47	5	0	9.27	9.27	0	0
10.77	89.76	6	0	4.77	4.77	0	0
8.69	0	8	0	0.69	0	0	0.69
9.48	0	8	0.69	2.17	0	0	2.17
18.19	0	10	2.17	10.36	0	0	10.36

- Given a reservoir of known capacity K, and sequence of inflows, determine the sequence of releases R_t, that optimize an OF.
- OF may be function of storage volume or the release.

- $S_t \le K \ \forall \ t$ restricts the release during a period to the corresponding demand, while the OF maximizes the sum of releases.
- Thus the model aims to make the release as close to demand as possible over the period.
- $S_{T+1} = S_1$ makes the end of year storage equal to beginning of the next year's storage, steady state solution achieved.
- If the initial storage at beginning of first period is known, an additional constraint $S_1 = S_0$ may be included.

Example – 2

Solve the problem in Example-1 using LP

$$\max \sum_{t} R_{t}$$

$$t = 1,2,...12$$

$$s.t. S_{t+1} = S_t + Q_t - E_t - R_t - O_t \forall t$$

$$R_{t} \leq D_{t}$$

$$\forall t$$

$$S_t \leq K$$

$$\forall t$$

$$R_{t} \geq 0$$

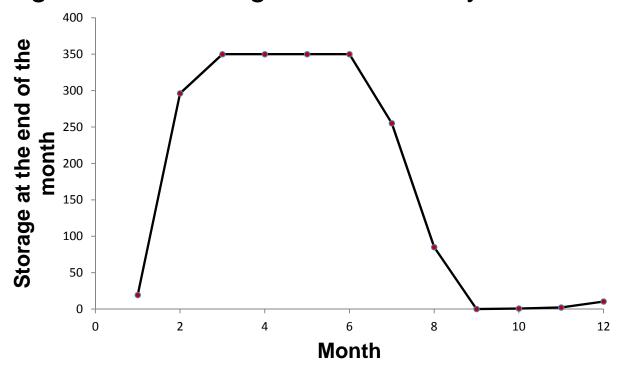
$$\forall t$$

$$S_t \geq 0$$

$$\forall t$$

$$S_{13} = S_1$$

Example – 2 (Contd.)

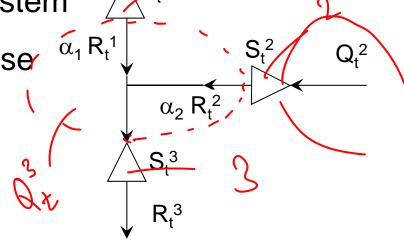

Solution:

t	Q_t	D_t	E_t	S_t	R_t	O_t	S_{t+1}
1	70.61	51.68	10	10.36	51.68	0	19.29
2	412.75	127.85	8	19.29	127.85	0	296.19
3	348.4	127.85	8	296.19	127.85	158.74	350
4	142.29	65.27	8	350	65.27	69.02	350
5	103.78	27.18	6	350	27.18	70.6	350
6	45	203.99	6	350	39.00	0	350
7	19.06	203.99	5	350	108.87	0	255.19
8	14.27	179.47	5	255.19	179.47	0	84.99
9	10.77	89.76	6	84.99	89.76	0	0
10	8.69	0	8	0	0	0	0.69
11	9.48	0	8	0.69	0	0	2.17
12	18.19	0	10	2.17	0	0	10.36

Soti-Sommetin

Rule curves for reservoir operation:

 Rule curve indicates the desired reservoir release or storage volume at a given time of a year.

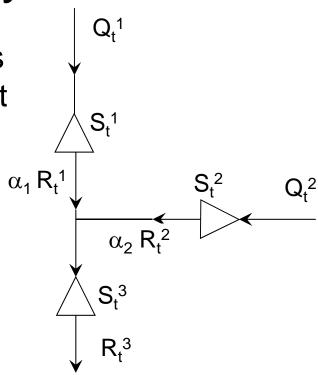

Multi-reservoir Systems

Multi-reservoir operation:

Consider a three reservoir system

 The system serves the purpose of water supply, flood control and hydro power generation.

 Release for water supply is passed through powerhouse


- Losses in powerhouse are negligible
- Benefits from powerhouse are expressed as a function of storage alone

Kegendor

Multi-reservoir Systems

• $B_{1t}^{i'}$, $B_{2t}^{i'}$ and $B_{3t}^{i'}$ are net benefits associated with unit release, unit available flood freeboard and unit storage for reservoir i in period t.

 A portion of release from reservoir 1 and 2 flows to reservoir 3.

- A minimum storage F_{\min}^i , needs to ensure flood control in flood season at the reservoir i.
- Maximum release at reservoir i is R_{\max}^i