

Water Resources Systems: Modeling Techniques and Analysis

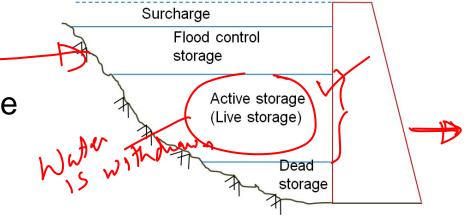
Lecture - 20 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

Summary of the previous lecture

- Multi-objective optimization
 - Weighting method
 - Attach weights to each objective

$$Z = w_1 Z_1 + w_2 Z_2 + \dots + w_p Z_p$$

- Constraint method
 - One objective is maximized with lower bounds on all the others
- Reservoir System
 - Flood control storage
 - Active storage
 - Dead storage



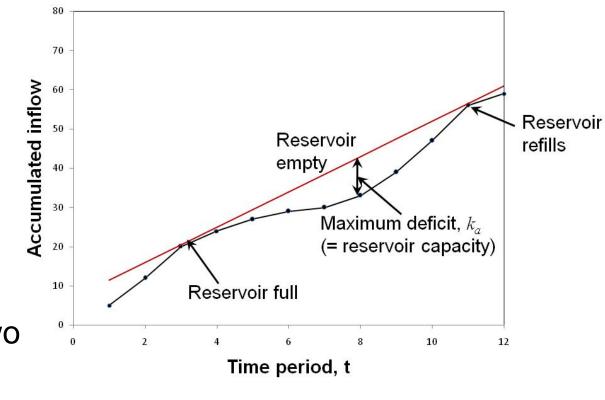
Reservoir Systems – Deterministic Inflows

Reservoir systems

- Reservoir modeling with deterministic inputs.
- Model formulations for two important aspects:
 - Reservoir sizing
 - Reservoir operation

- The problem of reservoir sizing involves determination of the required storage capacity of the reservoir for given inflows and demands in a sequence of periods.
- The inflow sequence is assumed to repeat, i.e., if the inflow sequence is a year, the inflow in a given period (within the year) is same in all years.
 - Deterministic inflows

- Determine active storage capacity using Ripple diagram or the mass diagram.
- Plot with time as abscissa and cumulative inflow as ordinate.
- For constant release R_t , line with slope R_t placed tangential.
- Maximum distance between the two gives active storage.



Reservoir Sizing (Sequent Peak Analysis)

Sequent peak analysis :

- Used for constant or varying demands.
- Find the maximum cumulative deficit over adjacent sequences of deficit periods and determine the maximum of these cumulative deficits.
- The inflow sequence is assumed to repeat and the analysis is carried out over two cycles (when necessary).
- Two cycles are required in case the critical period lies towards the end of an inflow sequence.

Sequent peak algorithm:

Let t denote the time period and K_t be defined as follows

$$K_t = K_{t-1} + R_t - Q_t \qquad \dots \text{ if positive} \\ = 0 \qquad \dots \text{ otherwise}$$

where Q_t is the inflow,

 R_t the required release or demand in period t.

 K_0 set equal to zero ($K_0 = 0$).

 K_t may be expressed conveniently as

$$K_t = \text{Max} [0, K_{t-1} + R_t - Q_t]$$

 K_t values are computed for each time period for two successive cycles of inflow sequence.

Let $K^* = Max \{K_t\}$ over all *t*, then K^* is the required active storage capacity of the reservoir

- If the value of K_t is zero at the end of the last period of first cycle, then computations over the second cycle are not necessary.
- This happens when the critical period is entirely contained in the first cycle.
- Beyond a time period t for which the value of K_t is exactly same as that in the first cycle for the corresponding period, then also the computations can be ceased.

Example – 1

Determine the required capacity of a reservoir whose inflows and demands over a 6-period sequence are as given below

Period, t	1	2	3	4	5	6
Inflow, Q_t	4	8	7	3	2	0
Demand, R_t	5	0	5	6	2	6

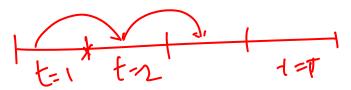
Total inflows = total demand = 24 units

Example – 1 (Contd.)
$$K_t = Max [0, K_{t-1} + R_t - Q_t]$$

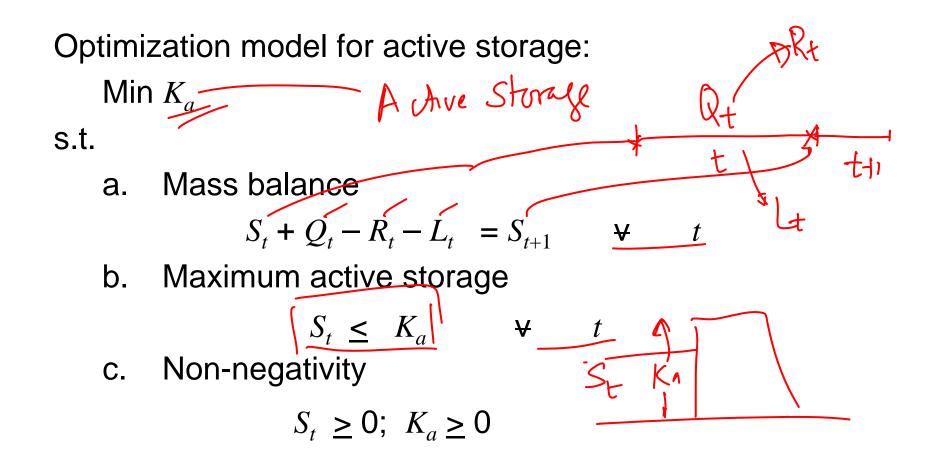
t	R_t	Q_t	<i>K</i> _{<i>t</i>-1}	$K_t = K_{t-1} + R_t - Q_t$	
1	5	4	0	1	
2	0	8	1	0	
3	5	7	0	0	
4	6	3	0	3	Reservoir capacity =
5	2	2	3	3	$ \operatorname{Max} \{K_t\} = 10 $
6	6	0	3	9	
1	5	4	9	10	Lele (1987)
2	0	8	10	2	Fr. God
3	5	7	2	0	Motificit
4	6	3	0	3	Lyonth Lyonth
5	2	2	3	3	repeats

- Sequent peak method does not require any optimization software.
- Inclusion of evaporation losses is not easy.
- The algorithm is not readily adaptable to a system with more than one reservoir.
- Mathematical programming tools provide such a capability.

Introduction:



- An alternative and more elegant method to sequent peak method.
- Assumption: Inflows are deterministic.
- In LP, the linearity assumption simplifies incorporating the evaporation loss function easily into storage continuity relationships.
- Two sets of constraints to be satisfied: one relates to storage continuity and the other to capacity.
- Let R_t be the release and D_t the specific demand.



In this,

- R_t is pre-specified (known) release
- Q_t is known inflow
- L_t is estimated storage loss
- S_t : storage at beginning of period t
- K_a : active storage capacity

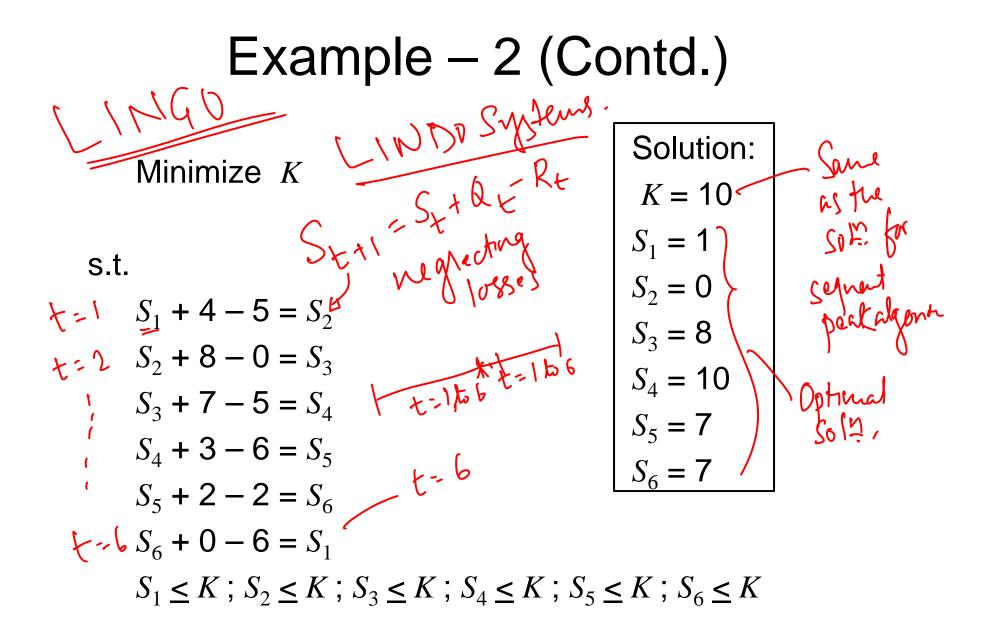
Decision variables

Example – 2

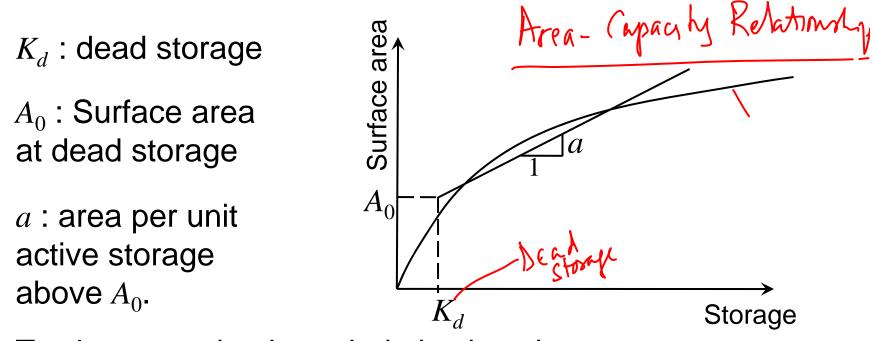
Using LP, determine the required capacity of a reservoir whose inflows and demands over a 6-period sequence are as given below

Period, t	1	2	3	4	5	6
Inflow, Q_t	4	8	7	3	2	0
Demand, R_t	5	0	5	6	2	6

Total inflows = total demand = 24 units



Continuity, with evaporation loss accounted



Total evaporation in period *t* is given by

$$E_t = A_0 e_t + a \left(\frac{S_t + S_{t+1}}{2}\right) e_t$$

18