

Water Resources Systems: Modeling Techniques and Analysis

Lecture - 19 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

Summary of the previous lecture

- Simulation
 - Reservoir operating policy
 - Multi reservoir simulations
 - Simulation of real time reservoir operation
- Multi-objective optimization

Weighting method:

• Attach weights to each objective

Max
$$Z = w_1 Z_1 + w_2 Z_2 + \dots + w_p Z_p$$

s.t.

$$g_i(X) \le b_i$$
 $i = 1, 2, ..., m$

where w_i is relative weight (non-negative)

- The weights reflect the trade-off of pairs of objective functions.
- These weights are varied systematically and the model is solved for each set to generate a set of technically efficient solutions.
- By varying the weights in each case, a wide range of plans are obtained for further analysis before the best one is selected.

Constraint method:

• One objective is maximized with lower bounds on all the others.

$$\begin{array}{ll} \text{Max} & Z_{j}\left(X\right) \\ \text{s.t.} & & \\ g_{i}(X) \leq b_{i} & i=1,\,2,\,\ldots,\,m \\ \text{and} & \\ Z_{k}(X) \geq L_{k} & \forall \quad k\neq j \end{array}$$

- Any set of feasible values of L_k resulting in a solution with binding constraints gives an effective alternative.
- If the constrained method of formulation can be solved using LP, it is particularly useful to conduct sensitivity analysis to infer the implied tradeoffs for given right-hand side values of the binding constraints.
- The dual variables of the binding constraints with L_k on the right-hand side are the marginal rates of transformation of the objectives $Z_i(X)$ and $Z_k(X)$.

Example – 1

A reservoir is planned both for gravity and lift irrigation through withdrawals from its storage. If X_1 is the allocation of water to gravity irrigation and X_2 is the allocation for lift irrigation, two objectives are planned to be maximized and are expressed as

Max
$$Z_1(X) = 5X_1 - 4X_2$$
 Max $Z_2(X) = -2X_1 + 8X_2$
s.t.
 $-X_1 + X_2 \le 6$ Way $Z = W_1 Z_1 + 8X_2$

$$-X_{1} + X_{2} \leq 6$$

$$X_{1} \leq 12$$

$$X_{1} + X_{2} \leq 16$$

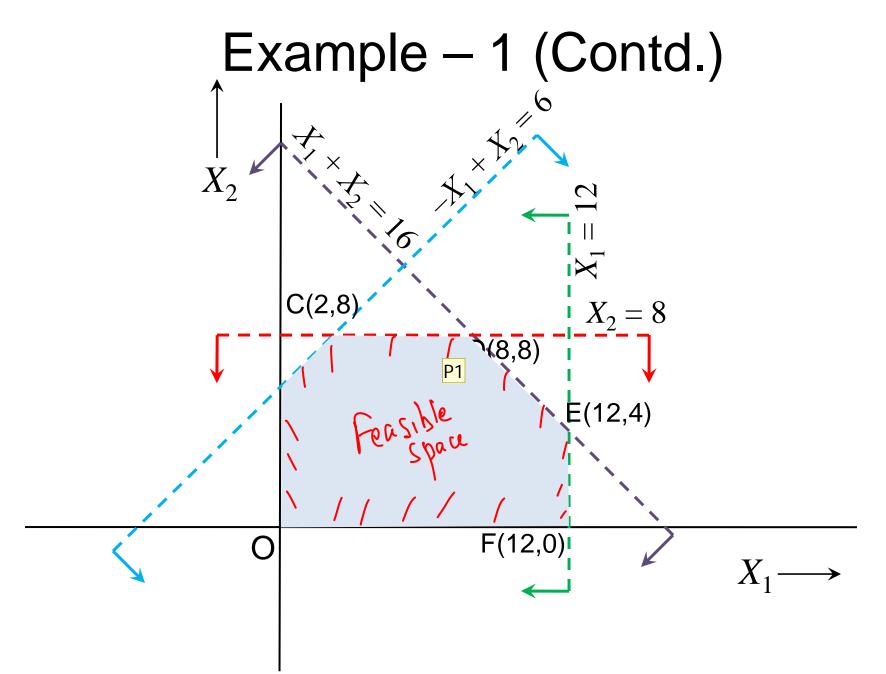
$$X_{2} \leq 8$$

$$X_{1}, X_{2} \geq 0$$

$$X_{1} + X_{2} \geq 0$$

$$X_{1} + X_{2} \geq 0$$

$$X_{2} \leq 8$$



Weighting method:

• Weights are assigned to the OFs

$$Z = w_1 Z_1 + w_2 Z_2$$

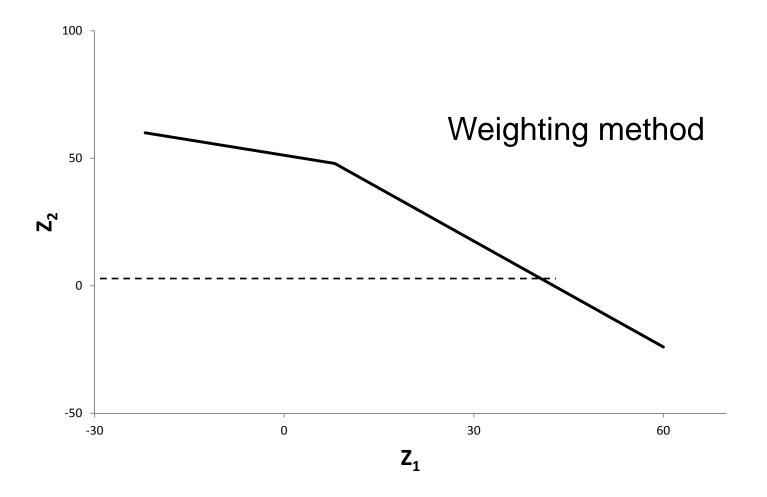
$$Z = w_1 \{ 5X_1 - 4X_2 \} + w_2 \{ -2X_1 + 8X_2 \}$$

• The solution for different weights are examined.

 $Z = w_1 \{ 5X_1 - 4X_2 \} + w_2 \{ -2X_1 + 8X_2 \}$

<i>w</i> ₁	w ₂	Ζ	Max value of Z	X_1	<i>X</i> ₂	Z_1	Z_2
1	1	$X_1 + 12X_2$	56	8	8	8	48
1	2	$X_1 + 12X_2$	104	8	8	8	48
1	3	$-X_1 + 20X_2$	158	2	8	-22	60
1	4	$-3X_1 + 28X_2$	218	2	8	-22	60
1	5	$-5X_1 + 36X_2$	278	2	8	-22	60
2	1	$8X_1$	96	12	0	60	-24
3	1	$13X_1 - 4X_2$	156	12	0	60	-24
4	1	$18X_1 - 8X_2$	216	12	0	60	-24
5	1	$23X_1 - 12X_2$	276	12	0	60	-24

Non-inferior solutions (Efficiency frontier)



Constraint method:

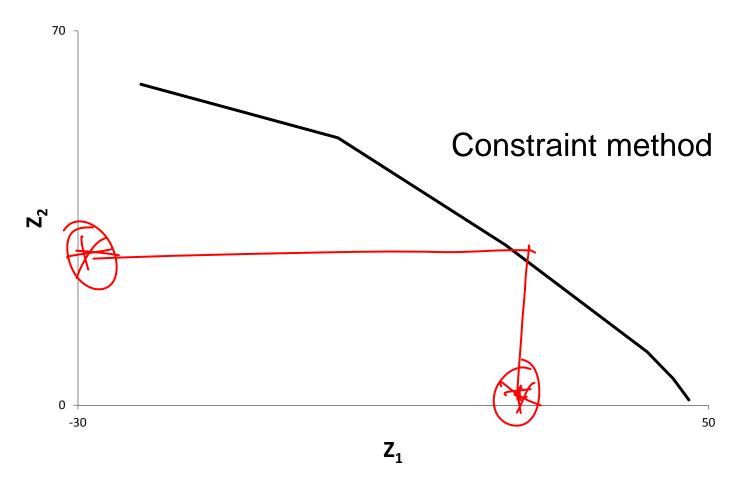
The problem is modified as $Z_1(X) = 5X_1 - 4X_2$ Max $Z_1(X) = 5X_1 - 4X_2$ $Z_{2}(X) = -2X_{1} + 8X_{2}$ s.t. $-2X_1 + 8X_2 \ge L_2$ Constraint on ZZ Minimum Jevel Minimum Zz to which Zz to which Ezz. $-X_1 + X_2 \leq 6$ $X_1 \le 12$ $X_1 + X_2 \le 16$ $X_2 \leq 8$ $X_1, X_2 \ge 0$

- Any optimal solution for an assumed value of L_2 is a noninferior solution, if the constraints with L_2 on the right-hand side is binding.
- By varying the value of L_2 , we get different noninferior solutions.

	Z_1	X_1	<i>X</i> ₂
1	47.5	12	3.125
2	47	12	3.25
5	45.5	12	3.625
10	42.2	11.8	4.2
20	33.2	10.8	5.2
30	24.2	9.8	6.2
50	3	7	8
55	-9.5	4.5	8
60	-22	2	8

The constraint containing L_2 is binding in all the cases.

Non-inferior solutions (Efficiency frontier)



• The problem is solved with second constraint as OF $Z_1(X) = 5X_1 - 4X_2$

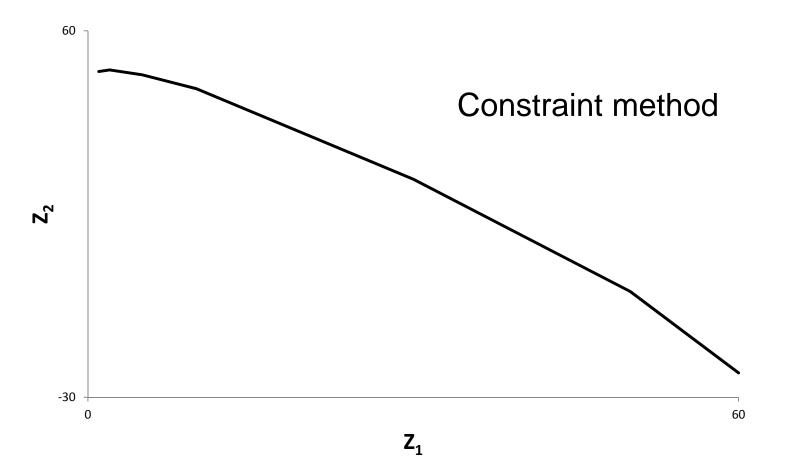
Max $Z_2(X) = -2X_1 + 8X_2$ $Z_2(X) = -2X_1 + 8X_2$

s.t. $5X_{1} - 4X_{2} \ge L_{1}$ $-X_{1} + X_{2} \le 6$ $X_{1} \le 12$ $X_{1} + X_{2} \le 16$ $X_{2} \le 8$ $X_{1}, X_{2} \ge 0$

L_1	Z_2	X_1	X_2
1	50	6.6	8
2	50.4	6.8	8
5	49.2	7.4	8
10	45.78	8.22	7.78
20	34.67	9.33	6.67
30	23.56	10.44	5.56
50	-4	12	2.5
55	-14	12	1.25
60	-24	12	0

The constraint containing L_1 is binding in all the cases.

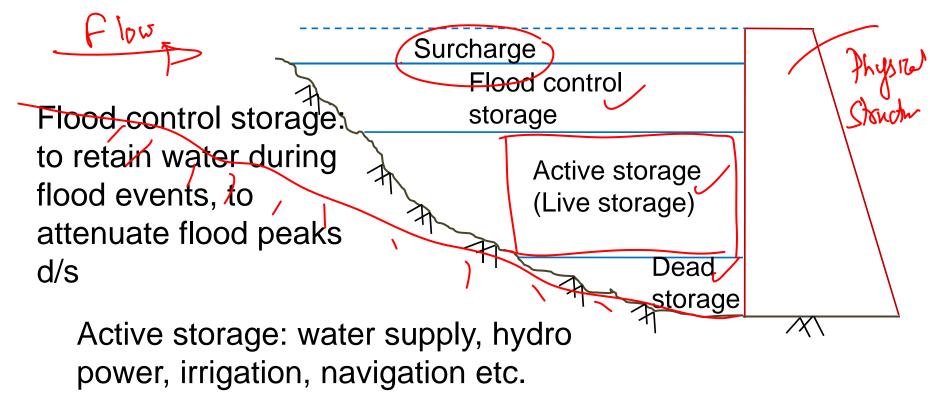
Non-inferior solutions (Efficiency frontier)



RESERVOIR SYSTEMS – DETERMINISTIC INFLOW

Reservoir System

• The total storage divided into three components:



Dead storage: sediment collection and recreation.

Reservoir Systems – Deterministic Inflows

Reservoir systems

- Reservoir modeling with deterministic inputs.
- Model formulations for two important aspects:
 - Reservoir sizing 🗸
 - Reservoir operation