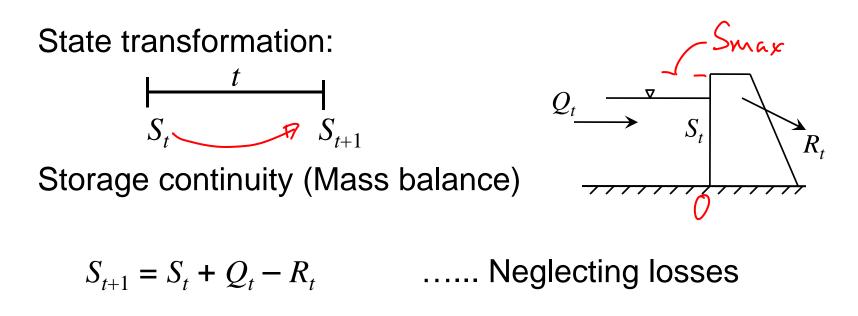
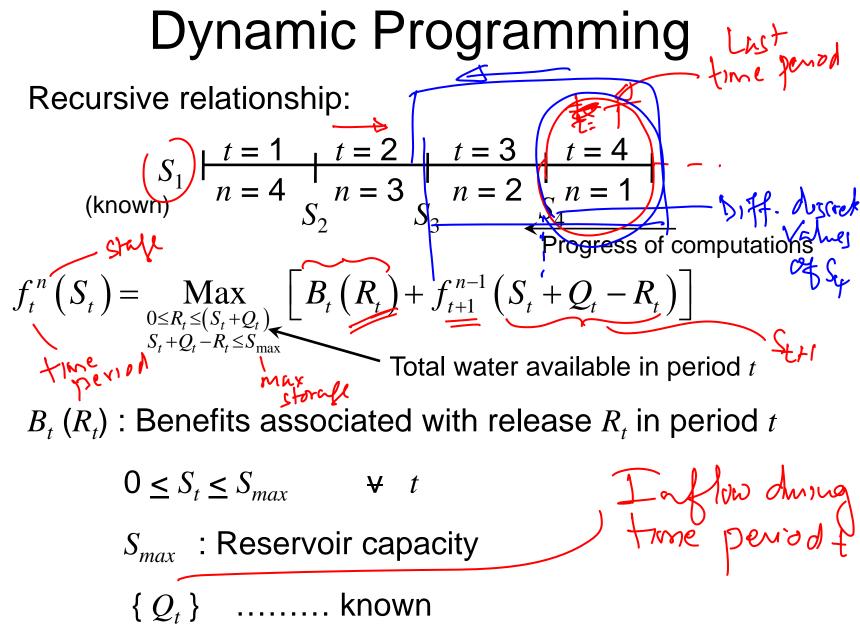

Water Resources Systems: Modeling Techniques and Analysis

Lecture - 16 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

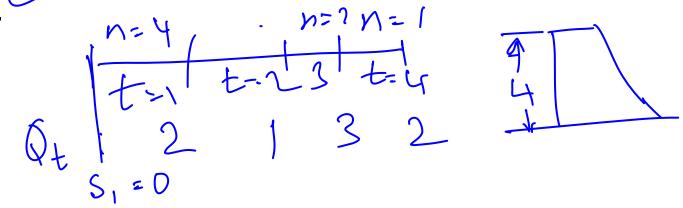

Summary of the previous lecture

- Water allocation problem
- Characteristics of DP
 - A single n-variable problem is divided into n number of single variable problems.
 - Problem is divided into stages, with a policy decision required at each stage; objective function must be separable.
 - Each stage has a number of possible states associated with it.
 - Policy decision transforms the current state into a state associated with the next stage.
 - Recursive relationship identifies the optimal decision at stage n, for state S_n , given the optimal decisions for each state at stage (n-1).
 - Solution moves backward (or forward) stage by stage, till optimal decisions for the last stage are found.
 - Optimal decisions for other stages are traced back from the solutions of those stages.

Reservoir operation problem:



- Operating policy: Amount of release from the reservoir during a period (e.g., a month, a season etc.), for a given storage level at the beginning of that period.
- Stage: Time period (e.g., month) for which decisions are required.
- State variable: Storage at the beginning of a stage.
- Decision variable: Release from the reservoir during a period.


where S_t : Storage at the beginning of period t

- Q_t : Inflow during period t
- R_t : Release during period t

Example:

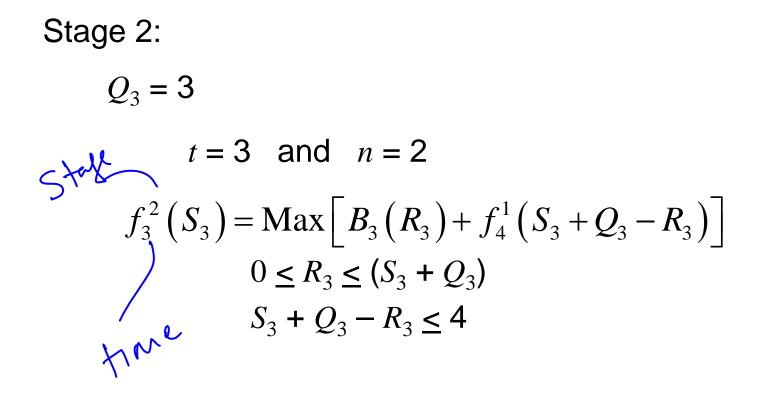
- Inflows during four seasons to a reservoir with storage capacity of 4 units are 2, 1, 3 and 2 units respectively.
- Overflows from the reservoir are also included in the release.
- Reservoir storage at the beginning of the year is 0 units.

• Release from the reservoir during the season results in the following benefits which are same for all the four seasons.

Release	Benefits	
0	-100	
	250	
2	320	
3	480	
4	520	
5	520	
6	410	
7	120	

• To obtain the release policy backward recursive equation is used, starting with the last stage.

Stage 1:


$Q_4 = 2$ Dynamic Programming						
S_4	R_4	$B_4(R_4)$	$f_4^1(S_4) = \operatorname{Max}\left[B_4(R_4)\right]$	R_4^*		
	0	-100				
0	1	250	Map: 320	2		
	2	320				
1	0	-100				
	1	250	490	3		
	2	320	480			
	3	480				
	0	-100				
2	1	250		4		
	2	320	520			
	3	480				
	4	520				

Contd.

9

 $Q_4 = 2$ Contd.

	R_4	$B_4(R_4)$	$f_4^1(S_4) = \operatorname{Max}\left[B_4(R_4)\right]$	R_4^*
	1	250		
	2	320		
3	3	480	520	4,5
	4	520		
	5	520		
	2	320		
	3	480		
4	4	520	520	4,5
	5	520		
	6	410		

Dynamic Programming $f_3^2(S_3) = Max [B_3(R_3) + f_4^1($

 $Q_3 = 3$

$S^2(S_3) = \operatorname{Max}\left[\right]$	$\left[B_{3}(R_{3})+f_{4}^{1}(S_{3}+Q_{3}-R_{3})\right]$
$0 \leq R_3$	$\leq (S_3 + Q_3); S_3 + Q_3 - R_3 \leq 4$

S ₃	<i>R</i> ₃	$B_{3}(R_{3})$	$S_3 + Q_3$ $- R_3$	$f_4^1(S_3+Q_3-R_3)$	$B_{3}(R_{3}) + f_{4}^{1}(S_{3}+Q_{3}-R_{3})$	$f_3^2(S_3)$	R_3^*
0	0	-100	3	520	420	800	2, 3
	1	250	2	520	770		
	2	320	1	480	800		
	3	480	0	320	800		
1	0	-100	4	520	420		
	1	250	3	520	770		
	2	320	2	520	840	960	3
	3	480	1	480	960		
	4	520	0	320	840		
				·			Contd.