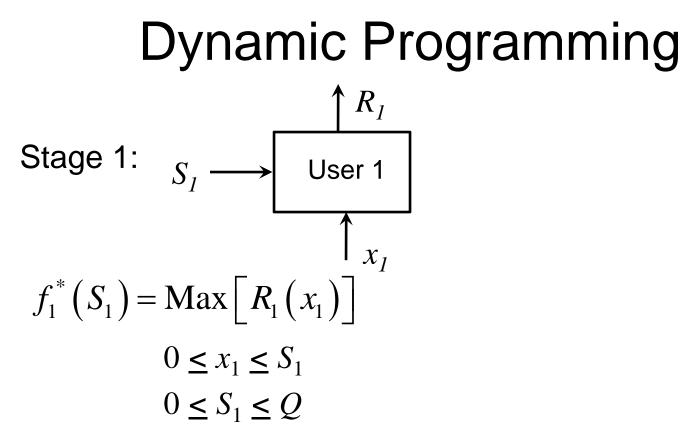


Water Resources Systems: Modeling Techniques and Analysis

Lecture - 15 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

Summary of the previous lecture

- Introduction to Dynamic Programming
- Representation of multi-stage decision problems



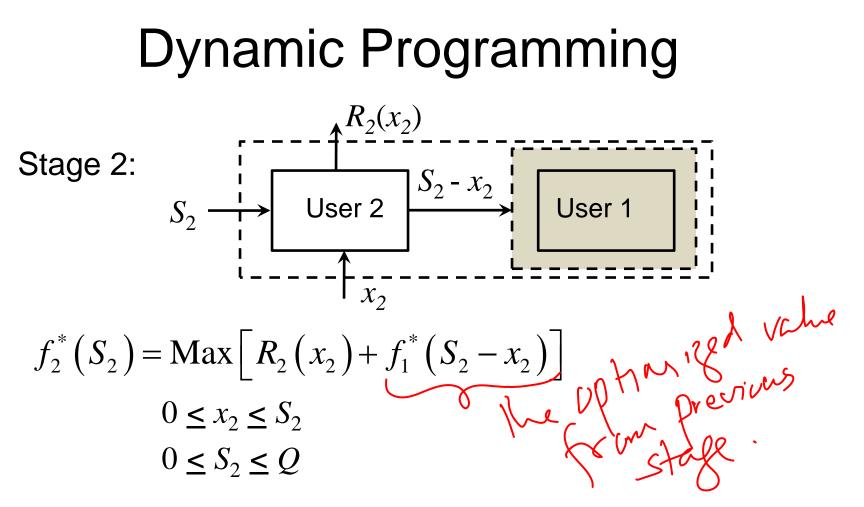
• Bellman's principle of optimality

Water allocation problem:

• A total of 6 units of water is to be allocated optimally to three users, User 1, User 2 and User 3.

Amount of	Return from				
water allocated	User 3	User 2	User 1		
x	$R_3(x)$	$R_2(x)$	$R_1(x)$		
0	0	0	0		
1	5	5	7		
2	8	6	12		
3	9	3	15		
4	8	-4	16		
5	5	-15	15		
6	0	-30	12		

 S_1 : Amount of water available for allocation to User 1 x_1 : Amount of water allocated to User 1 x_1^* : Allocation to User 1, that results in $f_1^*(S_1)$ $f_1^*(S_1)$: Maximum return due to allocation of S_1


S ₁	<i>x</i> ₁	$R_1(x_1)$	$f_1^*(S_1) = \operatorname{Max}\left[R_1(x_1)\right]$	x_1^*	
0	0	0	0	0	
1	0	0	7	1	
I	1	7	1	I	
	0	0		2	
2	1	7	12		
	2	12			
	0	0			
3	1	7	15	3	
5	2	12		5	
	3	15			

Contd.

Contd.

ita.					
	S_1	<i>x</i> ₁	$R_1(x_1)$	$f_1^*(S_1) = \operatorname{Max}\left[R_1(x_1)\right]$	x_1^*
		0	0		
		1	7		
	4	2	12	16	4
		2 3	15		
		4	16		
		0	0		
		1	7		
	F	2	12	16	4
	5	3	15		4
		4	16		
		5	15		
		0	0		
		1	7		
		2	12		
	6	3	15	16	4
		4	16		
		5	15		
		6	12		

6

- S₂: Amount of water available for allocation to User 2 and User 1 together
- x₂: Amount of water allocated to User 2

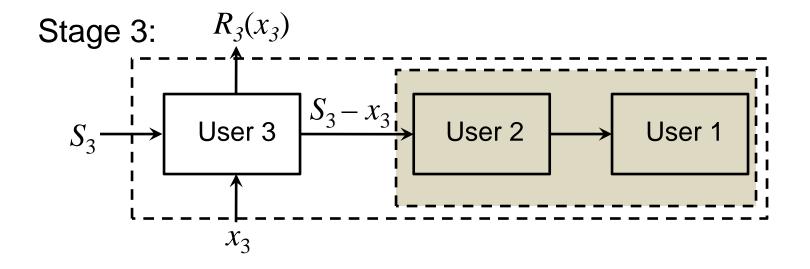
 $S_2 - x_2$: Amount of water available for allocation at stage 1 (to User 1)

 $f_2^*(S_2)$: Maximum return due to allocation of S_2

 x_2^* : Allocation to User 2, that results in $f_2^*(S_2)$

Stage 2

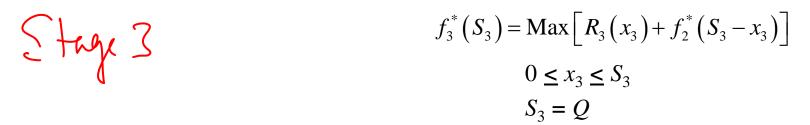
 $f_{2}^{*}(S_{2}) = \operatorname{Max}\left[R_{2}(x_{2}) + f_{1}^{*}(S_{2} - x_{2})\right]$


 $0 \leq x_2 \leq S_2 \ ; 0 \leq S_2 \leq Q$

S_2	<i>x</i> ₂	$R_2(x_2)$	$S_2 - x_2$	$f_1^* \left(S_2 - x_2 \right)$	$R_2(x_2) + f_1^*(S_2 - x_2)$	$f_2^*(S_2)$	x_2^*
0	0	0	0	0	0	0	0
1	0	0	1	7	7 ÇN	1 ^{0 Y} 7	0
	1	5	0	0	5 (1	0
	0	0	2	12	12		
2	1	5	1	7	12	12	0, 1
	2	6	0	0	6		
	0	0	3	15	15		
2	1	5	2	12	17	17	1
3	2	6	1	7	13	17	I
	3	3	0	0	3		Contd

Contd. 9

\sim	6 td	
$\mathbf{U}\mathbf{U}$	ntd	


ιq								
	S_2	<i>x</i> ₂	$R_2(x_2)$	$S_2 - x_2$	$f_1^* \left(S_2 - x_2 \right)$	$\frac{R_2(x_2) + f_1^*(S_2 - x_2)}{f_1(S_2 - x_2)}$	$f_2^*(S_2)$	x_{2}^{*}
		0	0	4	16	16		
		1	5	3	15	20		
	4	2	6	2	12	19	20	1
		3	3	1	7	10		
		4	-4	0	0	-4		
		0	0	5	16	16		
		1	5	4	16	21		
	5	2	6	3	15	21	21	1, 2
		3	3	2	12	15		
		4	-4	1	7	3		
		5	-15	0	0	-15		
		0	0	6	16	16		
		1	5	5	16	21		
		2	6	4	16	22		
	6	3	3	3	15	18	22	2
		4	-4	2	12	8		
		5	-15	1	7	-8		
		6	-30	0	0	-30		

$$f_3^*(S_3) = \operatorname{Max}\left[R_3(x_3) + f_2^*(S_3 - x_3)\right]$$
$$0 \le x_3 \le S_3$$
$$S_3 = Q$$

11

- S_3 : Amount of water available for allocation to User 1, User 2 and User 3 together = 6 units
- x_3 : Amount of water allocated to User 3
- $S_3 x_3$: Amount of water available for allocation at stage 2 (to User 1 and User 2 together)
- $f_3^*(S_3)$: Maximum return due to allocation of S_3
 - x_3^* : Allocation to User 3, that results in $f_3^*(S_3)$

S ₃	<i>x</i> ₃	$R_{3}(x_{3})$	$S_3 - x_3$	$f_2^*(S_3-x_3)$	$R_{3}(x_{3}) + f_{2}^{*}(S_{3} - x_{3})$	$f_3^*(S_3)$	<i>x</i> ₃ *
	0	0	6	22	22		
	1	5	5	21	26		
	2	8	4	20	28	KAF	
6	3	9	3	17	26	28	2
	4	8	2	12	20		
	5	5	1	5	10		
	6	0	0	0	0		

 When the third stage is solved, all the three users are considered for allocation; thus the total maximum return is

 $f_3^*(6) = 28$

• The allocations to individual users are traced back.

From the table for stage 3,

$$x_3^* = 2$$

From this the water available for stage 2 is obtained as,

$$S_2 = Q - x_3^* = 6 - 2 = 4$$

From the table for stage 2, with the value of $S_2 = 4$,

$$x_{2}^{*} = 1$$

From this the amount of water available for allocation at stage 1 is obtained as,

$$S_1 = S_2 - x_2^* = 4 - 1 = 3$$

From the table for stage 1, with the value of $S_1 = 3$,

$$x_1^* = 3$$

Thus the optimal allocations are

$$x_1^*$$
 = Allocation to User 1 = 3 units
 x_2^* = Allocation to User 2 = 1 units
 x_3^* = Allocation to User 3 = 2 units

Maximum return resulting from the allocations = 28

Characteristics of DP problem:

- Problem is divided into stages, with a policy decision required at each stage.
- Each stage has a number of possible states associated with it.
 - e.g., In the allocation problem, the amount of water available for allocation at a stage defines the state at that stage.

Policy decision transforms the current state into a state associated with the next stage.

State Transformation : $T(S_n, x_n)$ S_n : Current state in stage n x_n : Decision in stage nIn allocation problem, the transformation function is, $(S_n - x_n)$

• Recursive relationship identifies the optimal decision at stage n, for state S_n , given the optimal decisions for each state at stage (n-1).

$$f_n(S_n) = \underset{\{x_n\}}{\operatorname{Max}} \left[r_n(x_n) + f_{n-1} \left\{ T(S_n, x_n) \right\} \right]$$

 $r_n(x_n)$: Return for decision x_n in current state

 $T(S_n, x'_n)$: Transfer function to get the state S_n corresponding to S_n and x_n .

In allocation problem,

Stage/1

Stage 2

Stage 3

- Solution moves backward (or forward) stage by stage, till optimal decisions for the last stage are found.
- Optimal decisions for other stages are traced back. Objective Function Separable Separable Must be Separable