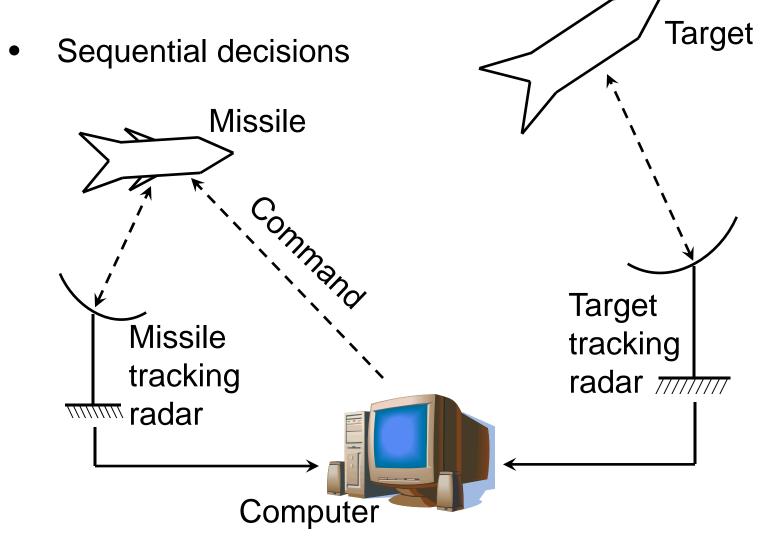

Water Resources Systems: Modeling Techniques and Analysis

Lecture - 14 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

Summary of the previous lecture

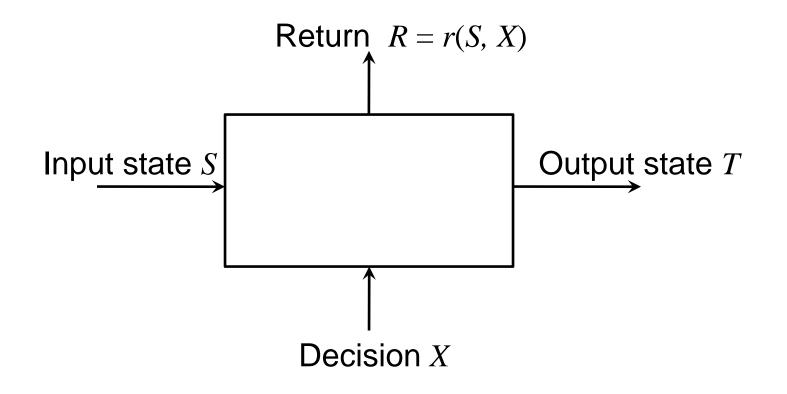
- Dual problem
 - Formulation of dual problem
 - Dual problem solution from solution of the primal problem
- Sensitivity analysis
 - Change in the RHS of constraints


Piecewije

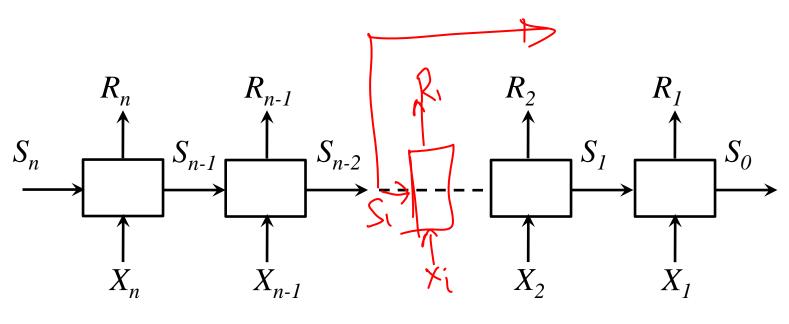
DYNAMIC PROGRAMMING

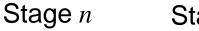
- Dynamic programming (DP) is ideally suited for sequential decision problems.
- DP is a mathematical technique well suited for the optimization of multistage decision problems.
- Developed by Richard Bellman in the early 1950's.
- Applications :
 - Reservoir operation, water allocation, capacity expansion, irrigation scheduling, water quality control, shortest route problems etc.

An Example of Multi-stage Decisions



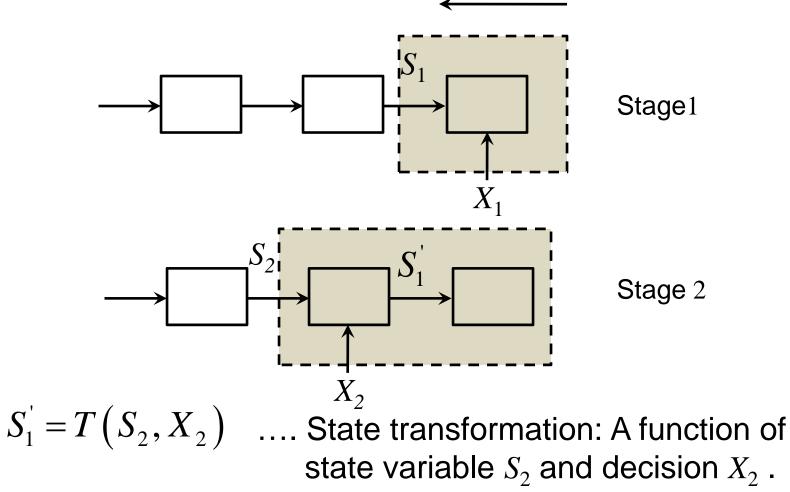
Ref: S.S.Rao (1996), Engineering optimization, Theory and practice, John Wiley & Sons, Inc.


- State of the system
 - Current position, speed and orientation of Missile and Target.
- Decision: Speed and orientation for the Missile during next time interval.
- Objective: To hit the Target in minimum time.


Representation of DP problem:

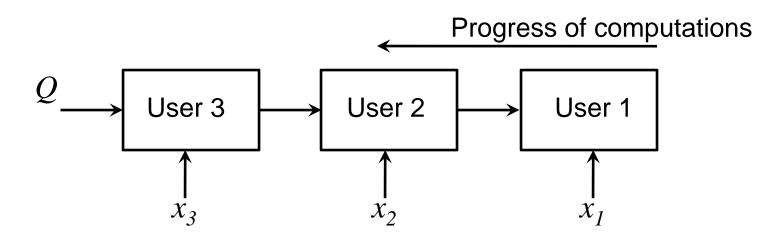
• Single stage decision problem

- Serial multi-stage decision problem
 - Output from one state is input to the next

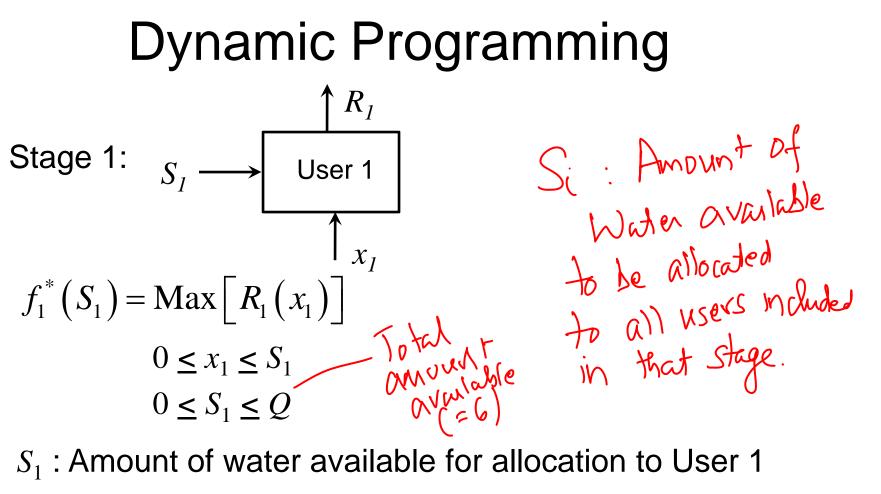


Stage1

Bellman's principle of optimality:


- "Given the current state of system, the optimal policy (sequence of decisions) for the remaining stages is independent of the policy adopted in the previous stages".
- The principle implies that, given the state S_i of the system at a stage *i*, one must proceed optimally till the last stage, irrespective of how one arrived at the state S_i .

Stage-wise optimization:


Water allocation problem:

- A total of 6 units of water is to be allocated optimally to three users, User 1, User 2 and User 3.
- The allocation is made in discrete steps of one unit ranging from 0 to 6.

• The returns obtained from the users for a given allocation are as follows

Amount of water allocated	Return from			
	User 3	User 2	User 1	
A 1	$R_3(x)$	$R_2(x)$	$R_1(x)$	
0	0	0	0	
1	5	5	7	
2	8	6	12	
3	9	3	15	
4	8	-4	16	
5	5	-15	15	
6	0	-30	12	

 S_1 : Amount of water available for allocation to User 1 x_1 : Amount of water allocated to User 1 x_1^* : Allocation to User 1, that results in $f_1^*(S_1)$ $f_1^*(S_1)$: Maximum return due to allocation of S_1

S ₁	<i>x</i> ₁	$R_1(x_1)$	$f_1^*(S_1) = \operatorname{Max}\left[R_1(x_1)\right]$	x_1^*
0	0	0	0	0
1	0	0	7	1
	1	7		I
2	0	0)	Mar) 12	
	1	7		2
	2	12		
3	0	0	15	
	1	7 >		3
	2	12		5
	3	15		Contd

Contd.

Contd.

nta. _I					
	S_1	x_1	$R_1(x_1)$	$f_1^*(S_1) = \operatorname{Max}\left[R_1(x_1)\right]$	x_1^*
	4	0	0	16	4
		1	7		
		2 3	12		
		3	15		
		4	16		
F	5	0	0	P 16	4
		1	7		
		2	12		
		3	15		
		4	16		
		5	15		
	6	0	0	- 16	4
		1	7		
		2	12		
		3	15		
		4	16		
		5	15		
		6	12		

15