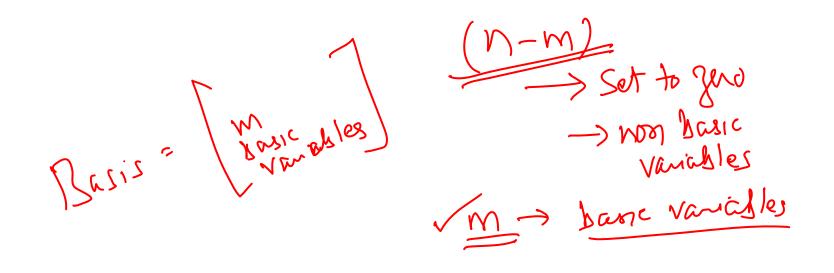


Water Resources Systems: Modeling Techniques and Analysis

Lecture - 10 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

Summary of the previous lecture

- Motivation for the simplex method
- Algebraic approach Simplex algorithm



Example – 1

Maximize

$$Z = 3x_1 + 5x_2$$

s.t.

$$\begin{array}{c} x_{1} \leq 4 \\ 2x_{2} \leq 12 \\ 3x_{1} + 2x_{2} \leq 18 \end{array}$$
 Constraints
$$\begin{array}{c} x_{1} \geq 0 \\ x_{2} \geq 0 \end{array}$$
 Non-negativity of decision variables

Example – 1 (Contd.) Iteration-1 Tableau-1 $Z - 3x_1 - 5x_2 - 0x_3 - 0x_4 - 0x_5 = 0 \dots \text{ Row } 0$ $x_1 + x_3 = 4 \dots \text{ Row } 1$

 $2x_2 + x_4 = 12 \dots$ Row 2

 $3x_1 + 2x_2 + x_5 = 18 \dots$ Row 3

Basis	Row	Z	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	b_i
Z	0	1	-3	-5	0	0	0	0
<i>x</i> ₃	1	0	1	0	1	0	0	4
<i>x</i> ₄	2	0	0	2	0	1	0	12
<i>x</i> ₅	3	0	3	2	0	0	1	18

4

Decisions to be made at each iteration:

- Whether the current solution is optimal?
 - The solution is optimal only if all the coefficients in the Z-row are non-negative
- If the solution is not optimal:
 - Which is the entering variable?
 - The variable with the highest negative coefficient in Z-row
 - Which is the departing variable?
 - The variable with the minimum b_i/a_{ii} value

i is the row, j is the entering variable

Calculated only if both b_i and a_{ij} are +ve

Iteration-1 (Tableau-1) Entering variable

Departing variable	Basis	Row	Z	<i>x</i> ₁	\bigvee_{x_2}	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	b_i	b_i/a_{ij}
	Z	0	1	ငolumn	-5	0	0	0	0	_
	<i>x</i> ₃	1	0	L Pivotal	0	1	0	0	4	_
	$\rightarrow x_4$	2	0	0	2	0 Pivota	1 al row	0	12	6
	<i>x</i> ₅	3	0	3	2	0	0	1	18	9
	<u> </u>		Pivo	t point						

Table for the next iteration:

- Change the basis by replacing the departing variable with the entering variable.
- Divide the pivotal row throughout by the pivot.
- Get all other numbers in the new table by

$$\hat{E} = E - \frac{R \times C}{P}$$

 \widehat{E} : new value

E : old value

R : number in the pivotal column in the row of E

- C : number in the pivotal row in the column of E
- P: pivot

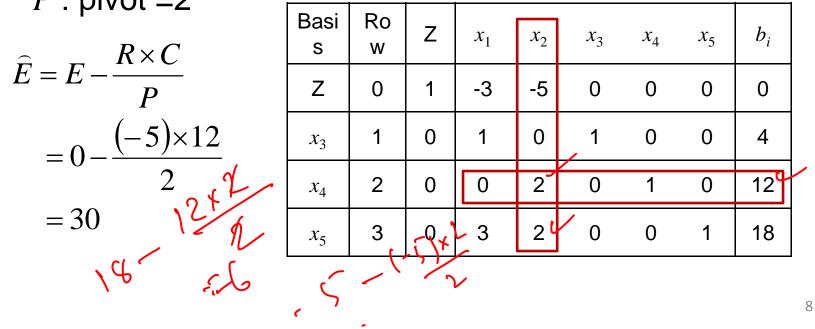
For example,

• New value for b_i in the Z-row

E : old value =0

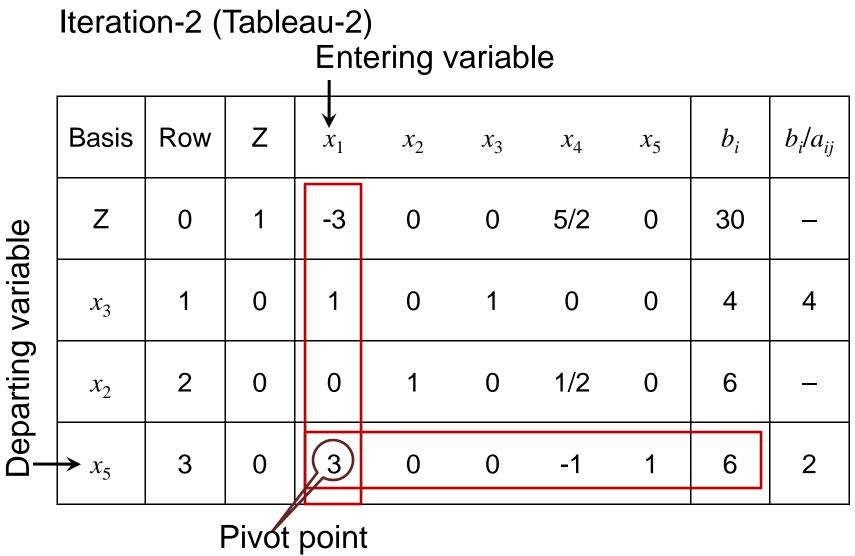
R : number in the pivotal column in the row of E = -5*C* : number in the pivotal row in the column of E = 12

P : pivot =2



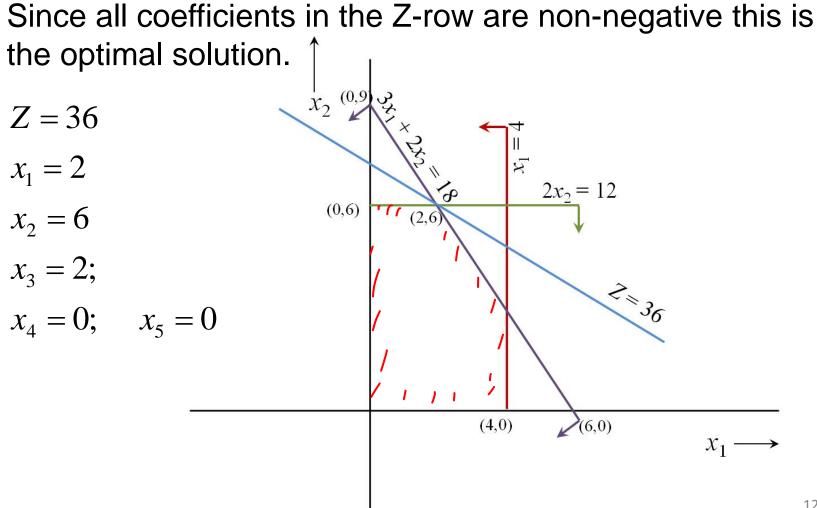
Iteration-2 (Tableau-2)

Basis	Row	Z	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	b_i
z	0	1	-3	0	0	5/2	0	30
<i>x</i> ₃	1	0	1	0	1	0	0	4
<i>x</i> ₂	2	0	0	1	0	1/2	0	6
<i>x</i> ₅	3	0	3	0	0	-1	1	6



Iteration-3 (Tableau-3)

Basis	Row	Z	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	b_i
Z	0	1	0	0	0	3/2	1	36
<i>x</i> ₃	1	0	0	0	1	1/3	-1/3	2
<i>x</i> ₂	2	0	0	1	0	1/2	0	6
<i>x</i> ₁	3	0	1	0	0	-1/3	1/3	2



LP – Simplex Method

- Tie breaking for entering variable
 - Two variables having highest negative coefficient – choose anyone arbitrarily
- Tie for departing variable
 - May lead to degeneracy
 - A degenerate solution is one in which at least one of the basic variables has zero value.
 - Degeneracy may indicate presence of redundant constraints.
 - Results in the same sequence of iterations without improving the value of objective function and without terminating the computations.

LP – Simplex Method

- In any iteration,
 - All basic variables have a coefficient of zero in the Z-row
 - Coefficients of basic variables constitute a unit matrix

$$\begin{array}{cccc} x_1 & x_2 & x_3 \\ x_1 & 1 & 0 & 0 \\ x_2 & 0 & 1 & 0 \\ x_3 & 0 & 0 & 1 \end{array}$$

LP – Multiple Solutions

Multiple solutions:

- One of the non-basic variables in the final table has a coefficient of zero in the Z-row
- When two optimal solutions X_1 and X_2 are obtained,

$$X_{1} = \begin{bmatrix} x_{1} \\ x_{2} \\ \cdot \\ \cdot \\ x_{n} \end{bmatrix} \qquad \qquad X_{2} = \begin{bmatrix} x_{1} \\ x_{2} \\ \cdot \\ \cdot \\ \cdot \\ x_{n} \end{bmatrix} \qquad \qquad X_{2} = \begin{bmatrix} x_{1} \\ x_{2} \\ \cdot \\ \cdot \\ x_{n} \end{bmatrix}$$

 $X^* = X_1 + (1 - \alpha)X_2$ is also an optimal solution $0 \le \alpha \le 1$ Infinite no. of solutions