Assignment – Module 2

1.	Solve by graphical method		
	Max. 5 x_1 + 7 x_2		
	s.t.	$3 x_1 + 4 x_2 \le 15$	
		$2 x_1 + 3 x_2 \ge 12$	
		$x_1 \ge 0; x_2 \ge 0$	
	Max.	$6 x_1 + 7 x_2$	
	s.t.	$7 x_1 + 6 x_2 \le 42$	
		$5 x_1 + 9 x_2 \le 45$	
		$x_1 \ge 0; x_2 \ge 0$	
	Max. $x_1 + 2 x_2$		
	s.t.	$x_1 - x_2 \ge -8$	
		$5 x_1 - x_2 \ge 0$	
		$x_1 + x_2 \ge 8$	
		$-x_1 + 6 x_2 \ge 12$	
		$5 x_1 + 2 x_2 \ge 68$	
		$x_1 \leq 10$	
		$x_1 \ge 0; x_2 \ge 0$	
2.	Maxin	nize the function	

Max. $6 x_1 + 8 x_2$

s.t. $5 x_1 + 10 x_2 \le 60$

 $4 x_1 + 4 x_2 \le 40$

 $x_1 \ge 0; x_2 \ge 0$

- Max. 3 x_1 x_2
- s.t. $4x_1 + 2x_2 \le 8$ $3x_1 + x_2 \le 10$ $x_1 \ge 0; x_2 \ge 0$
- Max. $3x_1 + x_2$
- s.t. $x_1 + x_2 \ge 1$ -3 $x_1 + x_2 \ge 3$ $x_1 \ge 0; x_2 \ge 0$
- Max. $x_1 + 2x_2$
- s.t. $2x_1 3x_2 \le 7$ $x_1 + 2x_2 \le 10$ $x_1 \ge 0; x_2 \ge 0$
- 3. Minimize the function

Min. $4x_1 + 8x_2$

s.t. $7 x_1 + x_2 \ge 7$ $2 x_1 + 3 x_2 \le 6$ $3 x_1 + 2 x_2 \ge 6$ $x_1 + 4 x_2 \ge 4$ $x_1 \ge 0; x_2 \ge 0$

Min. $x_1 + 2 x_2$

s.t. $2 x_1 - 3 x_2 \le 7$

$$x_1 + 2 x_2 \le 10$$

 $x_1 \ge 0; x_2 \ge 0$

4. Formulate a linear programming problem to maximize the total income and determine the areas x_1 and x_2 under crop I and crop 2, respectively, in hectares given the following data

Water			Fertilizer		Income/ha
Crop	Units/ha required	Cost/Unit (Rs)	Units/ha required	Cost/Unit (Rs)	Rs.
1	w ₁	p_1	\mathbf{f}_1	q ₁	h_1
2	W ₂	p ₂	f_2	q ₂	h ₂

The following are resource limitations.

Water availability is limited to W units.

Fertilizer availability is limited to F units.

Land availability is limited to A hectares.

Money available for investment is limited to B (Rs).

5. Two types of crops can be grown in a particular irrigation area each year. Each unit quantity of crop A can be sold for a price P_A and requires W_A units of water, L_A units of land, F_A units of fertilizer and H_A units of labor. Similarly crop B can be sold at a unit price of P_B and requires W_B , L_B , F_B and H_B units of water, land, fertilizer and labor respectively, per unit of crop. The available quantities of water, land, fertilizer & labor, and the requirements of the two crops are as given in the table below

Resource	Requiremen	nt per unit of	Maximum available	
Resource	Crop A	Crop B	resource	
Water	2	3	60	

Land	5	2	80
Fertilizer	3	2	60
Labor	1	2	40

The unit price P_A at which the crop A can be sold is 30 and the unit price P_B at which the crop B can be sold is 25.

- i. Formulate a Linear Programming model for estimating the quantities of each of the two crops that should be produced in order to maximize the total income.
- ii. Solve the LP problem
- 6. Identify the dual variables of the constraints of the problem in 2 and 3 in the final simplex table also solve the problems using dual variables.
- 7. Solve the problems 2 and 3 if x_1 is unrestricted in sign, solve the dual of the problems.
- 8. Solve the problems 2 and 3 if x_2 is unrestricted in sign.
- 9. Solve the problems 2 and 3 if both x_1 and x_2 are unrestricted in sign.