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Summary of the previous lecture

• Function with inequality constraints
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Minimize f(X)
s.t. 
gj(X) < 0           j = 1, 2, ….. m
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Kuhn – Tucker conditions:

• Function with equality constraints
• Lagrange multipliers
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Example – 1
Maximize

s.t.
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K-T conditions
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Example – 1 (Contd.)
Let 
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K-T conditions

i = 1, 2
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Example – 1 (Contd.)
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Example – 1 (Contd.)
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4 equations and 4 unknowns 



Example – 1 (Contd.)
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Using Eq.1 and Eq.2

multiplying eq.1 with 2 and subtracting eq.2, 
rearranging the terms

1 2 12 4 4 8x   

1 2 22 2 4x   

1 1 22 4 2 0x      

2 1 22 4 2 0x      
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2 1 2 2

4 2 43 4 2 4;
3

x xx x   
   



Example – 1 (Contd.)
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Substituting in Eq.2,

Substituting 1 and 2 in Eq.3 and Eq.4,
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Example – 1 (Contd.)
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First terms in both Eq.5 and Eq.6,

Solving the equations gives,
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Example – 1 (Contd.)
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Condition is satisfied
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Condition is not satisfied

Check for other solutions



Example – 1 (Contd.)
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Second terms in both Eq.5 and Eq.6,

Solving the equations gives,

Check for conditions
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Example – 1 (Contd.)
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Condition is satisfied
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Therefore,             satisfies all K-T conditions 



Example – 1 (Contd.)
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First term in Eq.5 and second term in Eq.6,

Solving the equations gives,

Check for conditions
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Example – 1 (Contd.)
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Condition is satisfied
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Example – 1 (Contd.)
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Second term in Eq.5 and second term in Eq.6,

Solving the equations gives,

Check for conditions
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Example – 1 (Contd.)
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Condition is not satisfied1 2
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Example – 1 (Contd.)
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Hence the optimal solution to the problem is

* *
1 2

8 6;
5 5
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LINEAR PROGRAMMING



Linear Programming

• Linear programming (LP) is an optimization method 
applicable for solution of problems with objective 
function and constraints as a linear functions of 
decision variables.

• Linear equations may be in the form of equalities or 
inequalities.

• During World War II, George B. Dantzig formulated 
general LP problem for allocating resources, and 
devised the simplex method of solution.

• LP is considered as a revolutionary development that 
permits us to make optimal decisions in complex 
situations.
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Source: “Engineering and optimization-theory and practice” by Singiresu S. Rao, 1996, John 
Wiley & Sons



Linear Programming
• Simplex method is most efficient and popular method.
• Karmakar’s method is 50 times faster than simplex 

method – developed in 1984.
• Some applications of LP in water resources

• Reservoir operation
• Irrigation scheduling
• Reservoir capacity determination
• Screening of alternatives in river basin 

development.
• Conjunctive use of surface and ground water
• Resource allocation

• 25% of all problems solved in computers.
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Linear Programming

General form of a LP

Linear objective function …. f(X) is linear function of X

linear constraints …. gj(X) are all linear functions of X

non-negativity of variables X > 0
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LINEAR PROGRAMMING
Graphical Solution



LP – Graphical Solution

• Graphical method gives a physical picture of certain 
geometrical characteristics of LP problem.

• Complex as the no. of variables increases. 
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Example – 2
Maximize

s.t.

1 23 5Z x x 
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Constraints

Decision variables
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