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Summary of the previous lecture
• Optimization of a function of a single variable
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Example – 1
Examine the function for convexity/concavity and 
determine the values at extreme points

The stationary point is obtained by solving
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Example – 1 (Contd.)
• Hessian matrix is
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Hessian matrix evaluated at stationary point (-2,0)
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Example – 1 (Contd.)
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Example – 1 (Contd.)
Hessian matrix is

  2 0
0 2

H f X
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Example – 1 (Contd.)

• As both the eigen values are negative, the matrix is 
negative definite

Hence the function has local maximum at  2,0X  
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As the Hessain matrix does not depend on x1 and 
x2 and it is negative definite matrix, the function is 
strictly concave and therefore the local maximum 
is also the global maximum



Example – 2
Determine the extreme values of the function

The stationary point is obtained by solving

and
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Example – 2 (Contd.)
• Hessian matrix is
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Example – 2 (Contd.)
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Hessian matrix is

  1
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Example – 2 (Contd.)
Hessian matrix is
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Example – 2 (Contd.)
Hessian matrix at
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Eigen values are 1 1 2 26 , 6x x  
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 1,2

1 26, 12  

Therefore the function has a local minimum at this point
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All the eigen values of Hessian matrix are positive, 
hence the matrix is positive definite at  1,2X 



Example – 2 (Contd.)
Hessian matrix at
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Eigen values are 1 1 2 26 , 6x x  
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 1, 2 

1 26, 12    

Therefore the function has a local maximum at this point

All the eigen values of Hessian matrix are negative,  
hence the matrix is negative definite at  1, 2X   

         3 3
max 1 2 3 1 12 2 20
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Example – 2 (Contd.)
Hessian matrix at
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Eigen values are -6 and 12 (or 6 and -12)
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   1,2 1, 2or 

The H matrix is neither positive definite nor negative 
definite at these two points
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Constrained Optimization



Optimization: Methods of  Calculus
Constrained Optimization:
• f(X) is a function of n variables represented by vector X

= (x1, x2, x3, …… xn)

Maximize or Minimize f(X)
Subject to (s.t.) gj(X) < 0           j = 1, 2, ….. m

f(X) and g(X) may or may not be linear functions

• If m > n the problem is over defined and there will be 
no solution unless redundant constrains are present

m < n
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Optimization: Methods of  Calculus
Constrained Optimization:
• Function with equality constraints
• Function with inequality constraints

Function with equality constraints
Maximize or Minimize f(X)
(s.t.) gj(X) =0 

Two methods discussed
• Direct substitution
• Lagrange multipliers
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Optimization: Methods of  Calculus

Direct substitution:
• Reduce the problem to an unconstrained problem by 

expressing m variables in terms of the remaining (n –
m) variables.
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For example,
3 variables : x1, x2, x3

2 constraints
x2, x3 may be expressed in terms of x1 and 
render the problem as unconstrained 
problem with only x1 involved 



Optimization: Methods of  Calculus

Limitation:
• With higher no. of variables and constraints this 

method becomes quite cumbersome.
• Constraint equations are often non-linear – difficult to 

solve them simultaneously.
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Example – 3
Minimize the function

s.t.

Solution:

The modified function is

  2 2
1 2 1 24f X x x x x  

1 2 4 0x x  

1 24x x 

     2 2
2 2 2 24 4 4f X x x x x    

2
2 216 8 2x x  

20



Example – 3 (Contd.)
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< 0, 

Global maximum occurs at 2 2x 



Optimization: Methods of  Calculus
Lagrange multipliers:

Maximize or Minimize f(X)
s.t. 

gj(X) =0                       j = 1, 2, ….. m

• Introduce one additional variable corresponding to each 
constraint.

• Lagrange function f(X) is written as

• When gj(X) = 0, optimizing L is same as optimizing f(X)
• The problem is transformed to unconstrained 

optimization problem 

   j jL f X g X 
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Optimization: Methods of  Calculus

• The problem of  n variables with m constraints is 
changed to a single problem of  (n + m) variables with 
no constraints.

       1 1 2 2 ..... m mL f X g X g X g X      
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Optimization: Methods of  Calculus
Necessary condition:  For a function f(X) subject to the 
constraints gj(X) =0, j = 1, 2, ….. m to have a relative 
optimum at a point X* is that the first partial derivatives of 
the Langrange function with respect to each of its 
arguments must be zero.
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Optimization using Calculus
The (n + m) simultaneous equations are solved to get a 
solution, (X* ,  *) .

The second partial derivatives are denoted by
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Sufficiency condition:



Optimization using Calculus
Sufficiency condition:

26

11 12 1 11 21 1

21 22 2 12 22 2

1 2 1 2

11 12 1

21 22 2

1 2

.... ...

.... ...
. . . . . .
. . . . . .

.... ...

.... 0 0 ... 0

.... 0 0 ... 0
. . . . . . .
. . . . . . .

.... 0 0 ... 0

n m

n m

n n nn n n mn

n

n

m m mn

L Z L L g g g
L L Z L g g g

L L L Z g g g
D

g g g
g g g

g g g







0D 

n terms

n
terms

m terms

m
terms



Optimization using Calculus

Leads to a polynomial in Z of the order (n – m)

Solve for Z

If all Z values are positive ….. X* corresponds to 
minimum
If all Z values are negative ….. X* corresponds to 
maximum
If some values are positive and some are negative … X*  
is neither a minimum nor a maximum.

27


