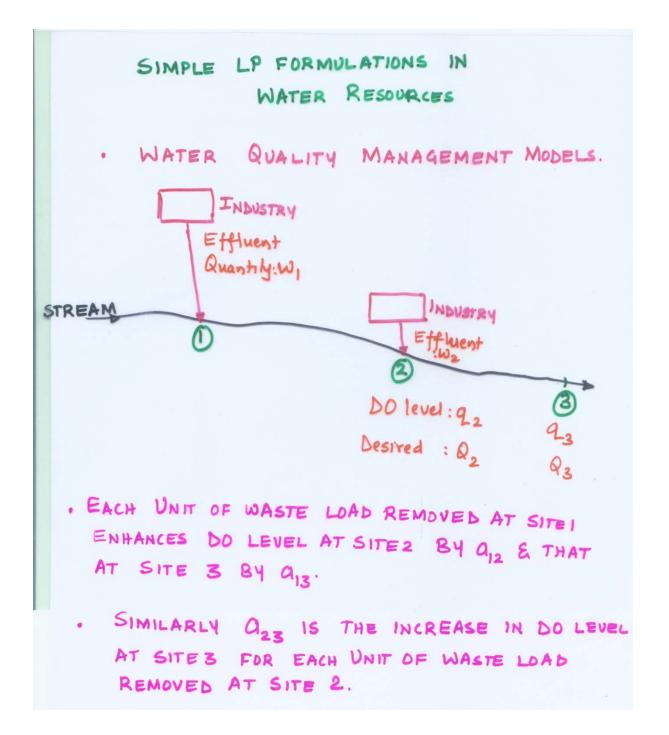


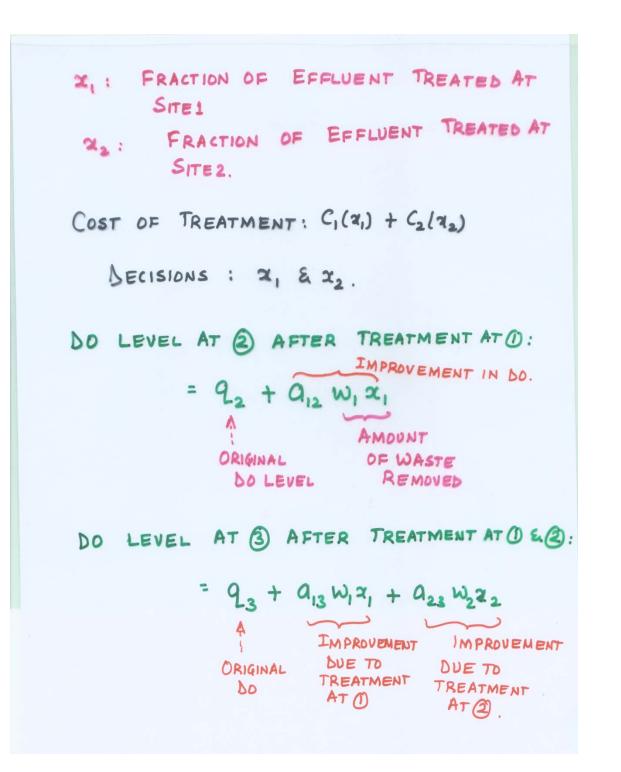
Water Resources Systems: Modeling Techniques and Analysis

Lecture - 3 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

Summary of the previous lecture

- Definition of a system
- Types of systems
 - Simple and complex systems
 - Linear and nonlinear systems
 - Time variant and time invariant systems
 - Continuous, discrete and quantized systems
 - Lumped parameter and distributed parameter systems
 - Deterministic and probabilistic systems
 - Stable and unstable systems





OPTIMIZATION MODEL: MIN. $C_1(x_1) + C_2(x_2)$ - Jesned @ 2 S.t. $x_{min} \leq x_1 \leq x_{max}$ Xmin S X2 S Xmax. TECHNOLOGICAL LIMITS 5

Optimization and simulation

• Mathematical expression for optimization problem $\begin{array}{l} Maximize \ f(X) \\ subject \ to \ (s.t.) \\ g_j(X) \leq 0 \qquad j=1, \ 2, \ \dots \ m \end{array}$

Where *X* is vector of decision variables

 $X = [x_1, x_2, x_3, \dots, x_n]$

n decision variables, m constraints

- Decision variables are the variables for which decisions are required.
- Complexity of the problem varies depending on nature of function, constraints and the no. of variables and constraints.

Optimization and simulation

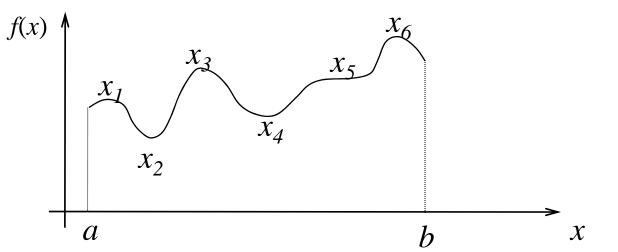
- Simulation is a technique used to mimic the behavior of a system.
- Simulation is used to answer "what-if" type of questions.
- Simulation is a powerful technique for analyzing complex systems for performance evaluation
- Decision makers would be interested in examining a number of scenarios rather than just looking at one single solution that is optimal; simulation is useful in such situations.

Optimization and simulation

- Possible to obtain near-optimal solutions by repeatedly simulating a system with various sets of inputs.
- Typical examples where simulation is used are
 - Analysis of river basin development alternatives
 - Multi-reservoir operation problems
 - Generating trade-offs of water allocations among various uses
 - Conjunctive use of surface and ground water resources.

Function of a single variable:

• Let *f*(*x*) be a function of a variable *x*, defined in the range *a* < *x* < *b*

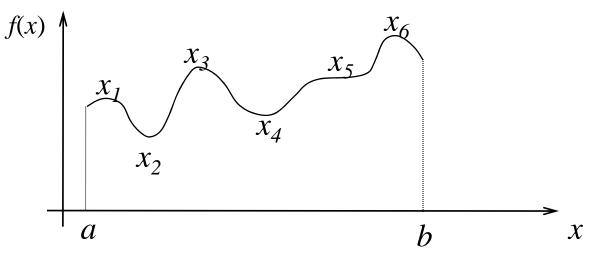


• Local maximum: value higher than any other value in neighbourhood; x_1 , x_3 and x_6 are local maxima $f(x_1 - \Delta x_1) < f(x_1) > f(x_1 + \Delta x_1)$

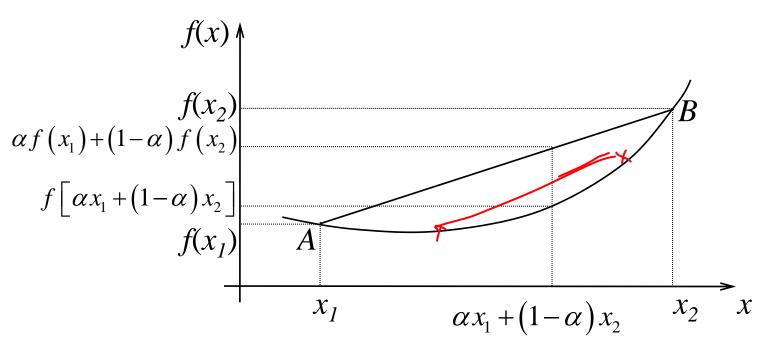
- Local minimum: value lower than any other value in neighbourhood; x_2 and x_4 are local minima $f(x_2 \Delta x_2) > f(x_2) < f(x_2 + \Delta x_2)$
- Saddle point: The slope of the function is zero at saddle point (x_5) ; value of the function is lower on one side and higher on other (or vice-versa).

 $f(x_5 - \Delta x_5) < f(x_5) < f(x_5 + \Delta x_5)$; Slope of f(x) at $x = x_5$ is zero

- Global maximum: value of function is higher than any other value in the defined range (point x₆ in the figure)
- Global minimum: value of function is lower than any other value in the defined range (point x₂ in the figure)



• Convex functions:



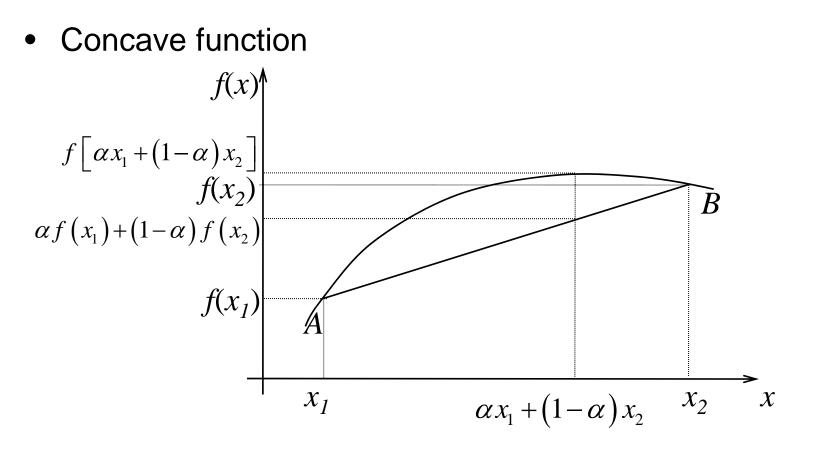
 A straight line (AB) drawn between any two points is above the curve

• f(x) is said to be strictly convex if

 $f\left[\alpha x_{1}+\left(1-\alpha\right)x_{2}\right] < \alpha f\left(x_{1}\right)+\left(1-\alpha\right)f\left(x_{2}\right) \qquad 0 \leq \alpha \leq 1$

- If the inequality sign < is replaced by < sign, then f(x) is said to be convex but not strictly convex
- If the inequality sign < is replaced by = sign, *f*(*x*) is a straight line and satisfies the condition for convexity mentioned above; A straight line is a convex function
- If a function is strictly convex, slope increases continuously

For a strictly convex function, $\frac{d^2 f}{dr^2} > 0$



 A straight line (AB) drawn between any two points is below the curve

• f(x) is said to be strictly concave if

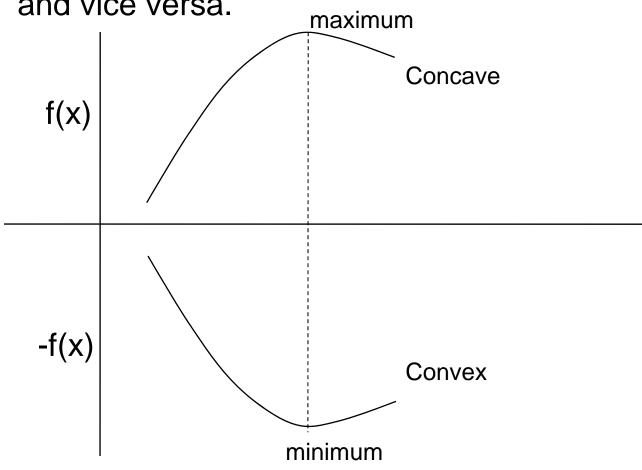
 $f\left[\alpha x_{1}+\left(1-\alpha\right)x_{2}\right] > \alpha f\left(x_{1}\right)+\left(1-\alpha\right)f\left(x_{2}\right) \qquad 0 \leq \alpha \leq 1$

- If the inequality sign > is replaced by > sign, then f(x) is said to be concave but not strictly concave.
- If the inequality sign < is replaced by = sign, f(x) is a straight line and satisfies the condition for concavity mentioned above; A straight line is a concave function
- If a function is strictly concave, slope increases continuously

For a strictly concave function, $\frac{d^2 f}{dr^2} < 0$

- A straight line is both convex and concave and is neither strictly convex nor strictly concave.
- A local minimum of a convex function is also its global minimum.
- A local maximum of a concave function is also its global maximum.
- The sum of strictly convex functions is strictly convex
- The sum of strictly concave functions is strictly concave.

• If f(x) is a concave function, -f(x) is a convex function and vice versa.



• If f(x) is a convex function and α is a constant,

 $\alpha f(x)$ is a convex function if $\alpha > 0$ and $\alpha f(x)$ is a concave function if $\alpha < 0$

• At stationary point, the slope of function is zero

$$x = x_0$$
 is a stationary point if $\left. \frac{df}{dx} \right|_{x_0} = 0$

Sufficiency condition is examined as follows

• If $\frac{d^2 f}{dx^2} > 0$ for all x, f(x) is convex and stationary point is a global minimum $f(x) = \begin{bmatrix} x_3 & x_5 \\ x_2 & x_4 \end{bmatrix}$