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Spatial variability of earthquake ground motions
and response of multi - supported structures

eLong span bridges, large dams, pipelines, tunnels,---
Reference: A Zerva, 2009, Spatial variations of seismic
ground motions, CRC Press, Boca Raton

SMART array at Taiwan (~ 1980 -s) 3
Circle Radius km SMA-s
0 0 1 2
1 0.2 4
2 1.0 12
3 2.0 12
Two more stations at 2.8 and 4.8 km
south of the centre.
Tri-axial accelerometers at every station




Focus: land based structures
(and not secondary systems like piping and

rotors in industrial complexes)

The assumption of uniform support motions Is not guranteed
to provide conservative estimates of response.

Why spatial variability occurs?
e\\ave passage effect

eEXxtended source effect

eScattering effect
e Attenuation effect




Wave front

Wave passage effect
Inclined incidence of plane waves
leading to time delays in arrival




A B

Extended source effect: as rupture propagates
along an extended fault, it transmits energy that
arrives delayed on the ground surface.
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Scatterer /

Scattering effect:
Waves encounter scatterers

Seismic source
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Distance 1
| Distance 2 ‘
Attenuation effect:
Caylt Waves attenuate as they propagate

(not very important for engineering
structures)




Questions
e\\hat are the phenomenological features associated with
response of structures subjected to spatially varying
ground motions?
e\\hen It Is Important to consider them?
eHow to model spatially varying ground motions as
random processes?

e Based on data

e Based on phenomenological considerations
eHow to develop modal combination rules when the
Inputs are specifed in terms of response spectra?




Structures under differential support motions

Model U (t) as a vector random process




Recall

Description of two random processes
Covariance matrix

C(tl’tZ):_CVU (t,t,) Cw (tut,)
_ _CUU (T) Cov (T)_
C(7)= Cw(z) Cu(7)

Cuu (tl’tz) Cuv (tl’tz)




PSD matrix

-t o)

S (@) = 1im = (X, () X; () = Sy (@) = Sy ()

S () =lim (U (@)W (@)=

Suy (~0) = M = (Us (=)W () = lim (U7 (0)Vs (@) = S (@)
Sl () = im = (U; (@), (@) = im = (Ur (-0)V; (~0)) =Sy (o)




o0

Suv (a))z j Ry (T)exp(ia)r)dr

o0

R (7) = i j Sw (@)exp(-iwr)dw

Sw (@)= ‘SUV (a))‘exp[—i¢(a))]
Suv ()| = amplitude of cross PSD function

¢ () = phase spectrum

puv (@) =Re[ S, (@) | = co-spectrum

Ouy (@) =1m| S, (@) | = quadrature spectrum




Complex coherency function

COhuV \/S SUV (a))

UU
coh, (@ =‘cohuv( )‘ex (—l@(a)))Coherency
coh,,, (@)[= S (@

JSu (@ s

0<|cohy, (@) <1

coh,,, (@)[=0
= lack of linear dependency between two processes
Two processes are linearly related

coh,,, (@) =1




Semi -empirical model A Der Kiureghian, 1996,
A coherency model for spatially varying ground motion,
EESD, 25,99-111.

Phenomena leading to spatial variability

e|ncoherency effect:
Scattering in heterogeneous medium and differential

superpositioning of waves arriving from extended source.

e\\Vave passage effect (time delays)
e Attenuation effect
eSite-response effect
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Consider two stations k and | and the ground accelerations

a, (t) and a, (t). Let these be modeled as zero mean, stationary
Gaussian random processes. The coherency function is given by

-

G, ()

Yk (a)) = \/Gakak (

\ 0
7/k| ‘7/kl
O (@)=tan™

Im

6.0 for G, , O(a))Galal ()0 /
)

for G, , ()G, (@) #0
)|exp[ i, ()]

7/k|( )

Re|

| Va\@ ( ):

/
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Digress
a(t)= Zn: A cos(at+¢)

A~N(0,67);A LAVi=je[Ln]
¢ ~1id U(O,27z);¢i 1L AjVi, | e[l n]

= (a(t))=0&(a(t)a(t+7))= Za cosa)/
1 /
Gaa(a)):aizﬂ:aﬁ(a)—a)i //

This PSD can be taken to be a discrete approximation to

2

Gul(w)= 21 for w, —%Aa)g W< +%Aa)//




Consider two stations k and | and the ground accelerations
a, (t) and a (t).

a, (t)= ZAf (@, r)cos(a)t+¢)

a,(t)= ZN:(pk“A +0q:B, ) i ( cos a)pt ¢ +5k|.

(A,B;)=random variables; A L B, Vi, j=1,2,--
A LAVI= |;B LB Vi ]

(B)=0:(A")=(B)
g, :iid ~U[0,27]; &, 1iid ~ N (0,4, )i L &¢; LA LBYVi, j,r,se[LN]

7, - arrival time delay of the I-th component from station k to |

Dy.i» O, - deterministic constants; p° +q§,i =1 Py =C0S By iUy =Sin By

r, =source to site distance, m =K, |;
f (o, 1, ):attenuation law;0 < f, (@, 1) <1




1

Y (a))zcos[ﬂ(dk,,a))]exp{—za (dk,,a))} /
o[ (o) o]
wd;”
Vapp (a))// v
g e (1) = tan ™ m ;H (@) H (—a)); //

Re| H, (o) H, (o)

d,, = distance between sites k and I;

wave passage
Og 00 (a)):_

d,; = projection of d,, along the direction of wave propagation
V..o (@) = apparent shear wave velocity

H_ (a)) = bed rock to surface transfer funciton; m =Kk, |




Data based models (Zerva 2009)

e Are the random fields isotropic? T
covariance between two stations de

hat 1S, does the
nend upon the

separation distance and not on the ©

Irection?

Does the direction of wave propagation matter in

this context?

e The notion of principal axes Is taken to be valid

for the array data. That is, for ground motion propagating
In the general epicentral direction, the components of
ground motions can be taken to be uncorrelated in the

physical direction.




LLoh and others
e¢One dimensional isotropic models

7 (& @) =exp|

‘y(f,a))‘ = exp

(& o) =exp :(—a—ba)z)f:

(& o) =exp _(—a —bw)&"
¢ = distance between sites; w=frequency rad/s




eDirectionally dependent coherency model

‘7/(5, a))‘ = exp [(—a1 —~ blcoz) £ coiéﬂ exp [(—a2 ~b,w )\gsin 6’”
@ = angle between direction of wave propagation and line joining
the sites

Typical values of model parameters

8, =0.02;b, =0.0025;a, = 0.02;b, = 0.0012/

& measured In km
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Harichandran and VVanmarcke model

(&, 1) = Aexp +(1- A)exp

b | 2
v(f)=k 1+[ij ‘B=1-aA+ A

0

—

-

v(f)

2BE

A=0.736;a=0.147;k =5210 m; f, =1.09 Hz;b =2.78

f . frequency in Hz //
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Hao and others (Anisotropic model)
7/(511 Sor |1 )‘ = exp(_ﬁ1§1 _18252)
—— ,
exp{—[al(f)\/gl+a2(f)\/g]f }

f =frequency Hz
&, &, =the projected distance of the station separation
vector along the normal to the direction of propagation

al(f)=%+bf +C;a2(f)=%+ef +g

B, =2.25x10"%; B, =5.1x10"*;a=1.07x10%;b = 2.65x10°°
c=-1.0x10"d =6.66x10":e =5.88x10°: g = 1.1x10°°
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Abrahmson and others

y(o, f)|=tanh{(2.54-0.012¢)

exp| (-0.115-0.00084¢) f |+

& <100my

.I: —0.878

}+O.35}
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Structures under differential support motions

Model U (t) as a vector random process
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et e < ot e el
t . t . t
Mg Mgg ug Cg ng ug Kg Kgg u

G' ~ N x1

i, py (t)~ N, xLN; =N+ N —

M,C,K~NxN

M,,C, K, ~ NxN,
Mg Cogr Ky = N x Ny
Pseudo-dynamic response

PR HERAY
Ku® +K,u, =0=u® =—KK,u, (t)=Tu, (t)

-1
r=-K7K,

pc,llo (t) - K;up + KUy = [_K;K_lKg T Kgg]ug (t)//




Total response= pseudo-dynamic response + dynamic response

/7 MU+ Cu + Ku = p,q (t)

Per (1) =—MUP"(t)—M i, —Cu®(t)-C,u,
=—MTU, (t) - M i, -TCu,(t)-Cu,

:_[MF+Mg}ug(t)@/




MUi+Cti+Ku =~ ML+ M, |ii, (t)-| CC+C, |u, (t)
Special Case

Mass matrix is diagonal = M = O//

C is proportional to K (C = aK)

=[Cr+C, |=a|KT+K, |=a| -KK'K, +K, |=0
—

MU + Cu + Ku :—MFU’g(t)//

['~NxN, R
U, (t) ~ N, x1
Note: If all supports suffer the same motion, N, =1

r={11 - 1




Random vibration analysis in frequency domain

MU +Cu+Ku =—| ML+ M, |ii, (t)-| CT+C, |u, (t) = p(t)
u, (t) ~ N, x1 vector of stationary random process with zero mean
and PSD matrix

Sgg( )_“m < gT(w)U;tT(a)»‘&/

p(t) = [Mr+|v| |, ) -[CT+C, |u, ()
Eﬁ_l_ o’ | ML +M, |Uy; (@)-io|CT +C, |U; (o)
=| @’ [MT +M, |-io[CT+C, ||Uy (o)

P (@) =Uy: ()] 0’ [T'M + M, J+io[T'C+C, ||




S, (@ )=|im1<[ IMT+M, |- ia)[cnc ﬂugT(a))

T—)ooT

Ugr (@ )[ IT'M +M ]+Ia)[FtC+C
S,y (@)=| & [MI'+M, ]-im[Cr+C, ]

S, a))[ FtI\/I+M +Ia)[q_tC+C /
S

w(@)=H(w)S, (0)H" (0))/

[H (a))} = [—COZI\/I +1wC + k]_l — ZN:( (Drnq_)sn

2 2




Pseudo-dynamic response
uf =-K=K,u, (t)=Tu,(t)
I'=-K7K, y

Syry? (a)) =15, (a))rt

uPu

/

/



Total response

u' (t):up(t)+u(t)/

=Tu, (t)+u(t)

U] (@) =TU,; (0)+U, (o)

=TU (0)+H(o)R (o)

P () = [ *[MT+M, |- ia)[cr+cgﬂugT(a))
UT (0)=| T+’ [MT +M, |-io[CT+C, | U (o)




Total response
U7 (0)=| T+’ [MT +M, |-io[CT+C, | U (o)
—

Srr (0)=| T+’ [MT+M, |-io[CT+C, ||S,, (@

F+a)2[l\/ll“+l\/l |a) CF+C ]t/

Variance of total response=

variance of pseudo-dynamic response+
variance of dynamic response+
contributions due to correlation between
pseudo-dynamic and dynamic responses




Modal combination rules
A Der Kiureghian and A Neuenhofer, 1993, EESD, 21,713-740

AN AN e At

X:nx1;

—

u,F:mx1
M,C,K:nxn

I\/Ig,Cg,Kg:mxm

M_,C., K. :nxm
X=x*+x" //

[Total response=pseudodynamic response+dynamic response]

X*=-K7Ku=Ruy/ -~

M +Cx“ + Kx=-(MR+M, )i -(—-CR+C,)u~-(MR+M,)




MX? + Cx° +Kx~- MR+I\/I
X\ =0y - & Vf\q> @/ -\ Fp diagend

V, +2n,m,Y, +a)i2yi :Z@ k(

k=1=
Ba =4 (Mrk + Mc|k); r. =k™ column of R;

|, =k™ column of k xk identity matrix.

Define: §. + 2n.w$, + @’s, = U, => Y ( )

Z( au
ak—qu 1,2, mbk,—q¢,8k,k 1,2,---,m1=12,-




A\

H, (i0) =[ o — " +i2n00, |

n

m

m
a.d,0,,0, 0, + 22 Z Z ab; Puys, Ou, T,
k=1 I1=1 j=1




S +21,0,5,; + a)izski = U, (t)

S +2n,m,5; + a)izslj = (t)



Y ( \/G ‘7/kl (iw)‘exp[iekl (Ia))]
Take
_ - L
o _(wgqu exp[igdqé/
s app

v, =shear wave velocity of the medium
V.., = Surface apparent wave velocity

Gy, (i0) =74 (i0),[G,, (©)Gy, (@) &

Gy (10) =74 (10) Gy, (@) (@)

Gy, (1) == 57 (10) /By, (@) G, ()
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4 4 2 2 4
Oy + 415 W5 O 0,

G.. . Q) :G
“k“k() Kk 224422 2 224422
Dy — @ | T4y D@ \ Oy =W ) + 3] Dy O

S/ \o /

Soil High pass filter

Pu, 1 Pus, 1 Psys, CAN NOW be computed.
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Response spectrum method
Recall: response spectrum definitions and limiting behavior

S + 208 + @s, = U (t)
Dk(a)i,ni):E[max‘ski t H%ax
lim D, (a, n,)—)E[max‘u H;&k’\m U g

a, —0

lim w; Dk(wi,ni)%E[mtax‘Uk () H — Yp,pax P4A

@y —>©
—_—

Peak factors




akbijpuksij 0,05
=1 j-1

1]




Since peak factors are weakly dependent on frequency and

2 2 2
P 1P o1 P we get
puk pu, pUk psu pski psu

E [max‘z (t H - [Zmlzm:akalpuku,uk maxul max

k=1 1=1

O bklbljpskle(

k=1 1=1 i=1l j=1
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Remarks

o The implementation of this rule requires the knowledge of

the PSD compatible response spectrum and knowledge of
coherency function.

eGeneralization to include multi-component nature of excitation
and separation of response into pseudo-dynamic and

dynamic components could be achieved.

e The idea of existence of principal axes for excitation could be
assumed and these axes could be assumed to be the same for

all recording stations




Optimal cross PSD function models for
earthquake excitations

What is the nature of cross PSD functions that lead
to the highest response?

A Sarkar and C S Manohar, 1998, JSV, 212(3), 525-546

44



Doubly supported SDOF system under
differential ground motions

' (e
Zp ,
= K £
A i
Te ™ e 7
E— T
1S s v
,__ / - /}}/?{_i/ 2.
777 i P 2 >
XEY g 160

What is relative displacment?
Total response=pseudo-dynamic response+dynamic response




Dynamic response

z(t)=z(t)-z,(t

\/._/__/-

—

m'z'+cz'+kz:—m(

)

I
HN
VN
r—
S
|
7~ N\




Description of input
X(t)& ¥ (t) are zero mean, stationary, Gaussian random processes

with PSD matrix S (o).

_[Su(@) S, (o)
{3 oo
S,y (@)=, (@) exp| -ig, (@)
S, (@)|{cos ¢, (w)—ising, ()|




Force in the left spring

k -
F =5 L% (t)=x(t) ]
:K_z+ X+y—x}
27 2
:E:Zz—(x—y)]
Define g/(t) =%=[22—(X— Y)]
Question

What is the psd of g(t)
and what Is Its variance?










200@@)

Hg(a)):{_Zco@yf@\lr

_I_

4

8nwaw, sing,, (o)

o= {[Su (o

yy

W’ [(a)2 — o’ )2 +(2nwaw, )

- ——————"

1 +‘SXy

(@)H, (@)

w (wﬁ — &’ )2 +(2nwa, )2

HH (o)
}

H, () [do




Rearranging the terms we get

(2(02 — & )2 +(2nwa,)

ule)= w* [(a)ﬁ —0)2)2 +(2nwa, )ZJ ‘Hf (0))‘
)\ o (a)f+4772a)2) I
Ha(2) a)4[(a)§—a)2)2+(27ya)a)n)2}Hf( )‘

H,(®)>20&H,(®)>0




o0

02 =[] S, (@) H (@) +S,, (0)H, () +[S, (@) H, (o) [do
Questoior/w T

What is the optimal S, (@) which produces the highest

variance agz ?




Case -1 Assume that the phase spectrum ¢, (a)) IS given
We have

f S,y (w)‘Hg{a),@y (a))}]da)

0g2 Z_E[Sxx(a)) Hl(a))+Syy(a))H2(a))+ S, (@) Hy {4, (c

<|IS, (a))‘ < \/Si(a)) S_yiw)
Clearly, o would reach its highest value if
Sy (@) =0vw>H ia) Xv(a))LSO

Sy (@) = /S () (@)Y Hy{o., (o)} >0

_/

Conversely ag would reach its least value if
S, (@) =0vVw>H {a) By, (a))} >0
S, (@) —\/SXX w)Vw>sH { o, B, (a))}SO




Remark
The least favorable and the most favorable responses

are produced neither by fuIIy coherent motions nor by
fully incoherent motions. Instead special form of CPSD
functions exist which produce these optimal responses




- 2cosg, (o)

Hs(a)):{ 4 T o (a))

= 7 (eh-of) +(2n0a)

877&)C()n sin ¢xy ((())
° [(a)ﬁ _ o? )2 _|_(277a)60n)

Let Hy (@) =R(@)cos| 4, (@)-a(2)],

2
. \

HH ()
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H3(a)) =R(w )COS[¢ (w)—a(a))}

\/91 ®)+9; (@
a(w)=tan"4 gl( )>
g, (@)

2 2 2

g, (w)=——F+ |H . (@

(@) " (wz—w§)2+(2na)a)o)2 ‘ ! )‘

g,(®)=+ . >‘Hf(a))




o, = [SXX (0)H,(®)+S,, (0)H,(@)+ ‘Sxy (a))‘ H, (a))]da)

O =3 8

H; (@) =R(o) COS[¢Xy (@)= a(a))}//
0< ‘Sxy (a))‘ . \/SXX ()

Clearly, for arto be maximum /
S, (@) =Sy (®)S,, (@) &cos| ¢, () -a(w)]=1

:>¢xy(‘0):04(w)=tan‘ y 91( )\

— = [ 9:(0),

favorable response.

> produces the least




Conversely, for o to be minimum
‘ \/SXX &COS[¢ (a))—a(a))}:—l
= Py ( )_ ( ) - 72'//

L) a(0)

=¢ (0)=r+a(w)=r+tan™ - >

(@) (@) 0. (0)
produces the most favorable response.

Remark
The optimal responses are produced by fully coherent

motions but the phase spectrum depends upon frequency
In a specific manner.




Problems of spatial variation of support motions
In secondary systems of industrial structures

Example: piping networks J (t)
u(t) . -
— Primary

system

v(t)

——l

Secondary
system

Multiply supported
structure subjected

to differential support
motions




