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Examples of stochastic models for earthquake ground motions
eSingle component: stationary & nonstationary models
eMulti-component and spatially varying load models

eGaussian and Poisson pulse process models

Main concerns

efrequency content

etransient nature and duration

etime dependent frequency content
emulti-component nature

espatial variability

etranslations and rotations

emodels for displacement and velocity components

eseismological considerations




Spectral representation of an evolutionary random process

o0

X (1) = J- a(t,w)exp(iot)dZ(w)

—00

a (t, a)) = deterministic function (in general, complex valued)

Z (a)) = orthogonal increment random process (complex valued)

with <dZ(a))> = O&<dZ(a)1)dZ* (w2)> =5(w,—w,)d¥ (o)

<X(t1)X*(t2)>=jooa(tl,a))a*(tz,a))exp[ia)(tl—tz)]d\ll(co)
O_‘ia(t,a))zd‘P(a))
f 4 (0) = ® () do, we get o (1) = [ |a(t,0) ©(o)do

—00

We interpret S, (@) =|a(z, a))‘2 @ (w) as the nonstationary

(evolutionary) PSD function of X (z).



Filtered Poisson Process models for earthquake ground motions
Rationale

During earthquakes slips occur along fault lines in an

Intermittent manner. This sends out a train of stress waves

In the earth crust. This eventually results in ground shaking.

Recall

N(T)
X()=> Yjw(t,rj);0<t£ T
=1

N(T) = counting process, Poisson; arrival rate = 1(t)
r; = arrival times; random

w(t, rj) = Deterministic pulse shape (z OVt < rj).

Y, = random magnitude of the j-th pulse.



Reference
Y K Lin and G C Cai, 1995, McGraw Hill, NY.



.w(t—fj);0<t£T

mX(t)zmy_:[w(t— Vi(2)dr,

min(z,.,z,)

Cyy (tl,tz) =E(Y2) j w(t1 —r)w(t2 —r)/l(r)dr,

0
Let 1(7)=0V 7 <0. Since w(¢—7)=0V¢—7 <0 we can write

o0

Cyy (tl,tz) =E(Y2) j W(tl—r)w(t2 —7)A(7)de

—00




We introduce

o0

b(t, a)) = _‘- w(u)

—00

so that

\/l(t —u) exp(—ia)u)du




Substitute

and noting that —Iexp ~i(w,— )7 |dt=6(w, - 0y) =

C.. ( )z (,, w)exp| —io(1,-1,) |dw




t a)exp[ za)t —1, ]da)




Selection of the shape of the pulse

Model -1

As in Kanai Tajimi model, the soil layer is modeled
as an elastic half-space which can be represented as
a sdof system.

U+ 2,00+ a)éu =2n,0,R+ a)f,R

W’ +i2n . o
Hl(a)): , g2 2 — > /
(a)g—a) ) +(2;7ga)ga))
(1—2;72 _
hﬁ: W, exp(—nga)gt)< \/jsma)gdeng COSw,,t
L g

N

>t >0
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Seismic wave amplification through soil layers

<_,u(L,t)

Ground level

Shear modulus G
L Mass density p

z  Damping ratio(7,<)

Bed rock
exp (it )
—=
Fu_ o, O
P ot* 0z* 7 0z°0t
, ou
u(0,t)= exp(za)t);ﬁ—(L,t) =0
Z




u(z,t) =L¢£) exp(iwr)
= —po’dexp(iot) = Go"exp(iot) +inwd” exp(iot)

= ¢"(G+inw)+ po’d=0

2

= §+ =0 2=—t2C
(G+inw)

¢(z) = AcoS Az + Bsin Az

#(0)=1 ¢(L)=0
=  ¢(x)=cosAz+tan ALsin Az




L \/G(1+ia)77) _ \/G(1+2i§)
P P
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Selection of the shape of the pulse
Model -2

Soil layer modeled as a shear beam with
hysteretic damping

wl B
B(1+iysgn o)
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Selection of the shape of the pulse
Model -3
Soil layer modeled as a viscously damped shear beam
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Selection of the shape of the pulse

Model -4

Soil layer modeled as a inhomogeneous hysteretically
damped shear beam

82w_16,2 82w_182 d{ln A(J’)} ow _
ot* oy dy oy

0

H4(a)):exp(—my)[cos(&)—%sin(51)} L

0.5

S = [wz,ﬁ‘z (1+iysgn a))_2 —sz P

(w)exp(iot)dw; t>0

) o

21



General model
N(T)

G, (r’t) = Zngk (f’(‘,t;p,v)

g, (r.¢; p,v) = Green's function which describes the

ground acceleration in the k£ — th direction

at a site locationif and time ¢

due to an impulsive application of a double couple.
Use elaborate models (3d-layered soil half-space)
to estimate the Green's function.




T
SMA-2

Ground level
[ —

Rock
outcrop

Bed rock —

SHAKE 2 ~SMA-1
software '



Models for multi-component earthquake ground motions
eEarthquake ground acceleration at any point can be
resolved into three components along three orthogonal
directions.

2 Translation
O igil;;fl(t)+j)(2 (¢)+kX,(¢)
/r/ - VY (r)=i6,(¢)+ jO,(t)+k6,(t)
1
3 (X, ()] [6(t)
X()=2X,(t)p;0=16,(t)¢
X, (0)]  16:(2)]
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Uttarkashi (India) earthquake,
OCT 20,1991 02:53 IST
Station: ALMORA
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} . Treat this as a vector random process
6x1

Focus attention on translations

Cror (1) =(X (1) X (1)) =

(X)) (%()X()) (n()X ()
(X,(1) X, (1)) (X7 (1))
(X (1) X (1)) (X, (1) Xs(0))

X, (t)=¢/(t)S,(¢);i=12,3



Consider X (¢) =+

f)
where S(¢)=4S,(t); is a stationary vector random process
)

1S (1),

with zero mean and e (t),e,(t)&e,(t) are deterministic

—————a

<X(t)Xf(t+r)>= (t)e (t+2')< £)S" (¢ + )>

= Ry (t1+7)=e(t)e(t+7)Ry(7)

=R, (t, t) :El)RSS (O)ﬂ

Note: Ry (0) is constant since S(¢) is stationary.

(
envelope functions. We assume e, (¢) = e( );i=12,3
(1)

Also, Ry (0) is symmetric and expected to be fully populated
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R,y (t,t)=e"(¢) Ry (0)

We introduce a trasnformation

S(t)=d'S(t)

where @ IS a 3x 3 transformaiton matrix.
Clearly, <S( )> =0 and

(S(£)S' (t+7))=(@'S(1)S" (1) @)

= Ry; (1) = 0'Rys (7)
55(0) = O'Rys (0) 0 —

Select @ such that ®'R, (0)® is diagonal.

. (0)=Diag|R, R,, Ry|—
= @ : matirx of eigenvectors of R (0).
= X (t)=e()®'S(t)= Ry (0)
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Simplifying assumptions
¢ (t)=e,(t)=e, (t)zi(ﬂ N
oS, (),S,(¢), and S,(¢): are uncorrelated randomb}_&es%s

—

= The psd matirx of S(¢) = {Sl(t) S, (1) S, (t)}t is diagonal
Note :
R.

SS

(0) is diagonal does not imply that psd matirx of

~ ~ ~

S(1)={8,(¢) $,(¢) S,(r)} is diagonal.
If S, (¢),S,(¢), and S, (¢) are broadbanded, the above
assumption can be deemed to be reasonable.
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Principal axes of excitations
eFind the direction of coordinate axes in which the

Ry (0) matrix becomes diagonal._~

e This can be done by solving the eigenvalue problem
associated with the matrix R (0),~

eThe major principal direction lies on the horizontal
plane in a direction that points towards epicentre from the
recording station. The minor direction Is in the vertical

plane.

eThis is an empirically observed feature from recorded
data and there exists no "proof" for this.

\\}-Most often structures are designed taking into account

only the horizontal components.

P




eThe principal directions for excitations need not coincide
with the global coordinate axes used in modeling the structure/

eFor a structure that is symmetric in plan, excitation in one
of the horizontal directions does not induce stresses in the
other orthogonal direction.

eMost structures are irregular in plan and the bending and torsional
action could be coupled in the predominant modes of the structural
oscillations. The modes could also be closely spaced.

eUnder the action of earthquake ground motions the structures
undergo significant torsional oscillations. This is one of the most
characteristic features of earthquake response of structures.
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The structure translates and twists.

Principal axes for excitations exist and the ground motion

components are uncorrelated along these axes.

v
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Stationary random vibration analysis and basis

for developing modal combination rule

Ref . W Smeby and A Der Kiureghian, 1985, EESD,
13, 1-12.

MU +CU + KU =-MLX

U = vector of nodal displacements relative to the ground

= translational components

J [ @ g
v V.
Horizontal Vertical |

of ground motion

L=-[L, L, L] =influence matrix.

v(t)=q'U(¢)=response quantity of interest.




MU +CU + KU =—-MLX
Let U = ®Y with

KO =AM®, &@MD =1, ®KD=A,&C =®'CD diagonal
= IV +CY+AY =—O'MLX (t) ¢—

~--1
H(w)= [A—[a)2 + ia)C] : diagonal matrix
Y(w)=-H(0)D'MLX (),

Gyy (@)= H(0)®'MLG ;, (0) LMOH™ (@) "




N
Generic response quantity: v(7)=> > . Y, (¢)

= = “
k=1 i=1 participation factor 4o

l
for i mode and ™

excitation component

j (-o) Gy ¢ (@)

Let Z(t)=[ Z,(t) Z,(t) Z,(¢)] bethe ground motion components
along the principal axes and let

X(t)=AZ(¢)

= Gy (0)= 4Gy (0) 4

() is diagonal.

where G, ,
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|Structure

- cos@ singd 0
A=|-sIn@ cosd
0 0 1

38



- cos@ singd 0O

X(¢t)=|-sin@ cos® 0|Z(¢) //

0 0 1

X, (1) =_Z1 cos0+Z,sin0 = (X, (1)) =0
X, (t)=-2,sin0+Z,c0s0 = (X,())=0
of =Var[ X,(t)]=(z])cos’ 0+(Z] )sin® 0

o =Var| X, (1) |= —<Zf>sin2 6’+<Z§>cos2 0
o, = (X, (1) X, (1)) = {<Z§>—<Zf>} cosésin 4

o, ~(1-a)sin 26 - (z)

& @ ) \/(1+ a) —(1-a) cos? 20 T <Zf> }
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(0)=q'OH () D' MLA(6)G,, (0) A () LMPH " () D'q

/ Diagonal ’X

/

—> Spectral moments: A = j "G, (0)dw
0

e|_eads to peak factors associated with mean and standard

deviation of the maximum response over duration .

eOne can determine the orientation & for which the response
variance reaches its maximum value.

eAlternatively, @ can be treated as a random variable and

the expected values of response quantities of interest could be
obtained with respect to pdf of 6.
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eForms the basis for development of modal combination rule
when the inputs are specfied in terms of a set of response

spectra along the principal axes.

o\When principal axes of excitation and structure axes coincide, or
when excitation intensities along three axes are the same, a
combination rule with

e SRSS for combination over excitation components, and
e CQC rule for combining over modal contributions
can be obtained.
eMore general forms which takes into account the value of &
have also been developed.
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Earthquake source mechanism, wave propagation,
site amplfication, and ground motion models

Earthquake ground motion=convolution of

the source mechanism with the Green's funciton
representing the wave propagation.

discontinuities due to faulting.

Application of double couples is equivalent to displacement

42




PSD models based on seismological considerations
(Boore and Atkinson, 1986, BSSA)

Fourier amplitude spectrum of ground acceleration
A (a)) =C§; (a)) S, (a)) Sy (a))

C =scaling factor

S, (@) = source spectrum

) = amplification factor/

) = attenuation factor

ran
C =
Apf° \ R

43



A (@) =CS,(0)S,(w)S, ()
- 2303

Amof3” \ R
Factors

radiation pattern of the seismic wave

free surface effect
partition of energy into horizontal components
mass density
seismic wave velocity
hypocentral distance

44



m,
1+£

m, = Seismic moment
@ = the frequency above which the spectral amplitudes of
ground displacements begin to fall off; corner frequency

(inversely proportional to source radius)
1

Fo2m O.49,B(A—J]3

@ m

c

m, = 10(1.5M+9.05)/

M = earthquake moment magnitude
Ao =stress drop
(All quantities in Sl units)




Kanali - Tajimi Model

4_|_4 2 2 2
5, ()= AL

2
2 2 2 2 2
(a) —a)g) +477ga)ga)

Clough and Penzien model

(a);1 + 477g2a)§a)2)

5,(0)=1 H, ()

2
2 2 2 2 2
((() - C()g ) T 477&’ C()gC() High pass filter

1 (@ +4mele’) (0/o,)

2

(a)2 -, )2 +4n,0,0° [1—(0)/ o, )ZT +4¢; (a)/ a)f)

High p;lfSS filter




O = quality factor of attenuation
f (@)= high cut filter dependent on f,,,a high cut-off frequency

= exp(—6w)
X (0)=eOF*(4.(0) /

Vs

Sgg<w,r>=e2<r>$v:<w>/ = [leto)]

Remark
The model relates the ground acceleration PSD to physical
properties of the source and the medium through which the

seismic waves travel.




Spatial variability of eart
and response of multi - su

nguake ground motions
Dported structures

L_ong span bridges, large o

ground motions, CRC Pres

ams, pipelines, tunnels,---

Reference: A Zerva, 2009, Spatial variations of seismic

s, Boca Raton

SMART array at Taiwan
Circle Radius km SMA-s
0 0 1
1 0.2 4
2 1.0 12
3 2.0 12

Two more stations at 2.8 and 4.8 km

south of the centre.

Tri-axial accelerometers at every station
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Why spatial variability occurs?

e\\ave passage effect
eExtended source effect
eScattering effect

e Attenuation effect
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Wave front

Wave passage effect
Inclined incidence of plane waves
leading to time delays

50




y B

Extended source effect: as rupture propagates
along an extended fault, it transmits energy that
arrives delayed on the ground surface.

51



————— o —

Scatterer /

Scattering effect:
Waves encounter scatterers

Seismic source

52



—‘—‘—

Distance 1
| Distance 2 ‘
Attenuation effect:
Caylt Waves attenuate as they propagate

(not very important for engineering
structures)




Questions
e\\hat are the phenomenological features associated with
response of structures subjected to spatially varying
ground motions?
e\\hen It Is Important to consider them?
eHow to model spatially varying ground motions as
random processes?

e Based on data

e Based on phenomenological considerations
eHow to develop modal combination rules when the
Inputs are specifed in terms of response spectra?




