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Alternatives for earthquake load specification

Monte Carlo
simulations

Time histories

AN

Spectral
estimation

Power spectral density

Spectrum
compatible
accelerograms

Duhamel’s integral

Extreme value theory

Spectrum compatibe PSD
using extreme value theory

Response spectra

Not suited for
reliability analysis




Modal combination rules : what is the basic problem?
EIZ" +mZ +cz = -mX, (1)

z(0,1)=0;z'(0,¢) =0, EIz"(L,t) =0; EIz"(L,t) =0
Eigenfunction expansion

2(x,1) = Za (1), (x)

with a, +2n,0,a, + w.a, =y,%, (1);n=1,2,--,0
What we know based on response spectrum based analysis?
a (t) 'n=12---, 0.

Z(x, t)‘ = MaX Zan (t)¢n (x)

O<t<T

We know max
O<t<T

We wish to know: max
O<t<T




Difficulty

Za
Remarks

eThe extrema of a, (¢) for n=1,2,---,c0 are likely to

occur at different times and they may have different signs.
eResponse spectra do not contain information on times at
which extrema occur nor do they store the signs of the extrema.

> a, (1), ()

of a,(¢); n=1,2,---,00 need to attain their respective extremum

)| # Z¢ ) max|a

0<t<T

MaX
O<t<T

can occur at a time instant #* at which none

® MaX
O<t<T

values.




Modal combination rules

References

A Der Kiureghian, 1981, A response spectrum
method for random vibration analysis of MDF
systems, Earthquake Engineering and Structural
Dynamics, 9, pp. 419-435

V K Gupta, 2002, Developments in response
spectrum-based stochastic response of
structural systems, ISET Journal of Earthquake
Technology, 39(4), 347-365



Application of principles random vibration analysis
In deriving modal combination rules

Consider a mdof system subject to single component
of earthquake ground acceleration.

Consider a generic response quantity R(¢) and consider
the modal representation

N
R(t)= ZLPiSi (1)
i=1
Y. =i-th mode particpation factor

S, (#) = contribution to R(s) from the i-th mode.

Let the ground acceleration be modeled as a stationary
random process and consider response in the steady state.




One sided PSD of R(z) Is given by

Gy (@)= 3 0¥ Gy (w)H, (0) H (o)

i=1 j=1

with G,. (@)=PSD of the ground acceleration and
1
H, (@)= (

a)]2 —a)z)+i277ja)ja)
The moments of the response PSD are given by

N N

A :Ia)mGR (0)dew= ZZ\Pi\PJIa)’”GF (0)H, (0)H,; (0)dw




One sided PSD of R(z) Is given by

Gy (@)= 3 0¥ Gy (w)H, (0) H (o)

i=1 j=1

with G,. (@)=PSD of the ground acceleration and
1
H, (@)= (

a)]2 —a)z)+i277ja)ja)
The moments of the response PSD are given by

N N

A :Ia)mGR (0)dew= ZZ\Pi\PJIa)’”GF (0)H, (0)H,; (0)dw




N N
LEtpmy ml] :lmzzij pml]\/ m,ii MJJ

\/ m,ii m]] i=1l j=1

Remarks

o/ IG a’a) 0'&/1 ij )a’a):cffe

ol = jG o)do=0c? &1,, = ij 0)do=o;

A O,
o0, = ———— =—"L_ =cross correlation between S, (¢) and S, (¢)
0. 2 2 J
\/ﬂo,iiﬂ’o,jj 0505,
ﬂZ,ij B GSZS] B . . .
= = cross correlation between S, (¢) and S, (¢)




For the case of G, ( )— G, (white noise excitation)
exact expressions for p, . for m=0,1,2 can be obtained
and to a first order approximation these expressions
are given by

2 a0+, (m+ 1) (07 ~a) (-1,

Lo =

4(a)i—a)j)2+(a) to, ) (77 +77,)

2 [(@+0) (n+n)-4(0-0) 15
) j)2+(a)l.+a)j) (77i+77j)
2 Jn, (00, (n4n,)~(07 ~0?)(nn,)]

2 2

4(a)l.—a)j) +(a)l.+a)j) (77,-+77j)




Remarks
e These approximations compare well with exact solutions

(less than 1% error for frequency ratios between 0.8 to 1.0)
e These expressions can be used for the case

when excitations are broad banded and the PSD function
varies slowly in the neighbourhood of system natural
frequencies.
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Analysis of response peaks
Assume: excitation is Gaussian

R = mrax‘R(t)‘

7 . time duration segmented from the steady state

o2 i 1—exp(—\/0.57z5es)
 (r)=|1-exp| —— | |exp| —vz 7 >0
, ( 2] exp(s®/2)-1

s = = = normalized barrier

V= = = mean upcrossing rate
o, 1w\ 4

2
5 =070= \/[1— A j = shape factor;0< 5 <1

2

o small = narrow band process;o close to unity = broad band process




Peak factors

<RT> = po,& Std Dev R_ =qo,
p,q = peak factors

For 10 <vr <1000 0.11< 0o <1,
0.5722 1.2 5.4

p:\/ZaneZ'Jr

\/2|n V,T 4 \/2|n V,T _13+(2In Ver)?"2

((1.6350'45 ~0.38)v for §<0.69

v for 6 >0.69
For vz large, say > 5000

0.5722
=+2Invr +
P N2Invr

1
q_\/gx/Zlnvz-
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Response spectrum method

Let S, (@,77)=mean value of the maximum absolute

response of an oscillator over duration 7z in the steady

State.
o=natural frequency of the oscillator
n=damping ratio of the oscillator

By definition S, (@, 77) = response spectrum of excitation 7 (7).

Question
How to evaluate the response of a mdof system when F(¢) is

specified in terms of S_(w,7)?

14



Recall

2
ﬂl,ii

0,ii”"2,ii

1 12 i .
v, =— |—=— = mean upcrossing rate& o, = || 1-

l
T /10,1'1'

) = shape factor

For broad band excitations within the frequency range of inerest,
the above expressions can be approximated by results for the case of

excitation being white noise process. =
1

vl:ﬂ&@.zz(ﬁjz
7T 7T

Use this In

po [Tl 0572 12 54
J2Invr 2Inv,r 13+(2Inv,z)

{(1.6350'45 ~0.38)v for §<0.69
Ve =

1% for 6>0.69
to get peakfactors p, and ¢, for each normal coordinate. 15




§T(w,n)=<max

T

s )

Moments of the PSD of ;- th mode response

S% (o,
ﬂ’O,ii: - ( > 77);
P;
(14,1 7)
ﬂl,ii = 2
2
2
. —
ﬂ‘Z,ii = pzz Srz (60,77)

S (w,n)

- (%)
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2, (2 +0,) 1+, )+{0? -

2

4(a)l.—a)j) +(col.+a) ) (77 +17;

ZM[(“) “"1)2 (1, +1,)=4(e0, -

Fro 4(a)i—a)j)2+(a)i+a)j) (77i+77

ZM[(@JF@)Z (771.+77j)—( : —

P2 = 2 2

4(a)l.—a)j) +(a)l.+a)].) (77i+77j)




Use (*) and (**) In

N N

/Im:]?a)mG (w)dw = ZZ‘PZ iAo

i=1l j=1

w)H, (0)H, (o)dw

to get 4,, 4, and A, in terms of response spectrum

with /1

CD‘--—:S

coordinates. Denote R, =¥, S (®,,7,). =

1 1

[zz—poy n j [zz © , RR ]

I }71 J i }?_17
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Mean of the peak response

1
B 2 Y
Rr = PO = [ZZ P | pO,inierrj

Here p and ¢ are peak factors of the response.
Recall

05722 =~ 12 5.4
JZHH@T’Q AJZHHQT 13+(2kn@rf2

szZM%T+
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Quantity of special interest: Mean of the peak response

2 2
P p -
RZ’ — pGR Z Z IOO,inierr
i j PiP;
It can be verified that the quantity P 1=
Pi
1
( \2

1
2
(zzpw n ] | SR T AR,
l;t]

g
contributuon due to modal
\ interactions )

20



1

— — 2
R = (Z R,ij . square root of sum of squares (SRSS) rule

/

1

2
[zzpo,, ,T ] | SR ST AR,
l;t]

o /

contributuons due to modal
\ interactions

. complete quadratic combination (CQC) rule.

\

J

1
2
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Remarks

eSRSS rule can be deemed satisfactory for systems in

which the natural frequencies are well separated and

modal damping is not very large. Excitation is broad banded
and strong phase long enough.

e¢CQC rule allows for correction due to modal interactions
and hence Is suited for systems with closely spaced modes.
e¢CQC rule can be implemented without having to evaluate
spectral moments.

eMean peak response is not dependent explicitly on period =

22



Recall : assumptions made

eEXxcitation has been taken to be stationary, Gaussian
white noise. [Duration of the strong motion phase of the
earthquake needs to be long and the excitation should be

broad banded].
e The ratio of the response peak factor and the modal peak

factor is taken to be unity:.
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Examples of stochastic models for earthquake ground motions
eSingle component: stationary & nonstationary models
eMulti-component and spatially varying load models

eGaussian and Poisson pulse process models

Main concerns

efrequency content

etransient nature and duration

etime dependent frequency content
emulti-component nature

espatial variability

etranslations and rotations

emodels for displacement and velocity components

eseismological considerations




Kanai — Tajimi & Clough and Penzien
Power spectral density function models

for free field earthquake ground acceleration

u(r)
<) Ground

;K
1 e

Soll layer T 1m
5;/ S Cg, () ()
‘D(.]'DC-I:) S ST 7T

UEL)
T

<{mmmm)> Bed rock

x, (¢) Local site condtions
‘xb (¢) - White ”O'Se‘ are accounted for




222

(a)+477g 222//

(a) —a) +477g

S(w)=1

Clough and Penzien model

(a) +477g2 2 2)

222

(coz a)) +477g

S(w)=1 H, (o)

High pass filter

(a) +477§ ° 2) (a)/a)f)4 )//
2

=1

(0" - )2 +4n’w. o [1-(&#@)12 +ag (ol o)

High pass filter




1.5

-0.5}

uoljelajeooe

15 20 25 30

time t

10
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How to allow for nonstationary nature of ground accelerations?
Nonstationarity : in amplitude modulation & frequency content.
Strategy: Use a deterministic modulaitng function.

’)'_fi(t) =e(t)S(t)

e(t) = deterministic envelope function

S(¢)=zero mean stationary Gaussian random process
(with PSD given by Kanai-Tajimi or

Clough and Penzien models) @

Examples
e(r) = 4y | exp(—at)—exp(-pt) |;a > >0
e(r) = (A + At )exp(—at)




acceleration

1.5

05%

05 ¢

30
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2oy + oy, = e(t)/s(tL

Y, +2n,w,y, + a)éz)@ =2y, + wf)’l

.

Introduce

Xo 2

X3 Vo

X1 2

=>4

x4) \yzz

(Ground displacement
Ground velocity
| Ground acceleration |

'S

fyz(t)w
= < yz( )>
Fa (1)

™~

0 1
_a)lz —21,@,
0 0

2
@) 2771(01

0
0
0

2
_a)z

0
0
1

—2n,w, i

-+ 3

‘O O, O

ve(t)s(t)

30




Examples for envelope function

2
e(t): r for 0 <t < 4s
A

=1 for 4 <t < 24s

=exp —%(t—24)2 fort>24s

e(r)=al| exp(-at)—exp(-pt) |,a> >0

e(r) = (A4, + At)exp(—at)




displacement m

0.025

0.02

0.015

0.01

0.005

-0.005

-0.01

-0.015

-0.02

-0.025
0

10 15
time s

20

25

30
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0.25

0.2+

0.15

0.1+

0.05
-0.05 -

s/w A1100|9A

-0.1r

-0.15 -

-0.2

-0.25

15 20 25 30

time s

10
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S/S/W UOoljRIg[@0.

15 20 25 30
time s

10

34



Nonstationarity in frequency content

e Random pulse processes
e Evolutionary psd functions



RECALL
Characteristic function and characteristic functional
el et X be arandom variable.

M, (6)=(exp[i6X]) = zexp[ié’x] Py (x)dx =

—_—
"

M, (6)=1+ 3% (x) = (x7)

—_— n=1 N+ ___

—_—

-—

Example: Let X ~ N(mf):MX(Q):eXp('

eLog characteristic function: InM , (8) = In{

, 1
For X ~ N(m, G), InM , (6’) = zmH—Eazé’Z/




eCumulants: InM, (0)= i( o) ><7//

= nl

—»n™ order cumulant
6=0

eLet (X,)", beasetof random variables

M, (6,6,,.0,)= <exp[i26’anj> = J' exp(iétfc)p;( (%)dx
n=1 —0

®

= m-dimensional joint characteristic function

<£1le£}12”'@: 1/

1 ( am,l+m2 +eeetm,,

Ty +my+ - +m,, m ALy m,
I Ox; *0Xy2 ++-OX,)

MX(gl,gz,...

6,=0,6,=0,--,6, =0




> (i60,)(i6, ){ X X, )+

INM, (6,6, ):(l-ej),q(Xj)%(iej)(iek)@(ijk)+...

K

my+my+--+m,

910,920,---,9mo/

For a vector of Gaussian random variables it can be shown
that all cumulants of order > 3 are zero.




Characteristic functional
Let X(#) be a random process.

M [6(1)]= <eXpUi<9(f)X(f)df)> 5

T

i@.&(r —tj) to characterize

hoo

We could select 6z

M [0(t)]=1+i[0(c) (X (¢ >dt+%”Q(tl)ﬁ(tz)<X(t1)X(¢2)>dtld12+...

)
InM, [0(t)]=i[0(¢) [ X (£)]ar+
)X (

.2
%”0(1 )i, | X (6) X (1,) ldudt, +-+-




Let X (z) be a Gaussian random process.

M, [6(1)]= <exp[ | iH(t)X(t)dt]>

T

:exp_ia[,u;(t dt——”C t t)6’( )61, )dtdt_

TT/

InM [ 0(t)]=i[ uy (1)6( dt——”C (,,1,)0(4,)6(t,) drdt,

ﬁ%—



Poisson pulse process

N(7) —— -
X(6)=YW,(t,7,),0<t<T A[}“‘ T T
k=1 e

N (¢) = Poisson counting process
W, (t,7, ) =random pulse commencing at time z, Wb

7, =random points distributed uniformly inO0to 7

Simplified version
N(t)

X(t)=> Yw(tr,);0<t<T

k=1

Y, = random amplitude of the k-th pulse (iid rvs).
w(t, Tk) = a deterministic pulse commencing at ¢ =z,

such that w(¢,7,)=0forz <z,

41



k=1

= iP[N(T) = n]<exp

=<exp _izé’(t) YKW(t 7, )t >

=F <exp iT@(t)Zn:YKw(t,Tk)dﬂN(T) =n >P

- i,
zj@ gthz'k)dt
0 k=l _

[ N(T) =n]

. J
'




M, [H(t)}ng[N(T)zn] exp_ize(t) n YKw(t,Tk)dt_>

I
/\

" To(0)vw(1,z, e > / o

K
I
/\
i 8
[HEN
~ S
3 | s
O ey N







MX[H(t)}:gP[N(T)=n](1+a)" ,é(

-eo( - a(e)ar S4| e (s |
:exp[—zl() )exp_1+a [ 4(c) df::epoﬁ(f)dT]

InM, ap //



jw(tl,f)w(tz,T)---w(tm,r)/l(r)dr_ drdt,---dt,

0

Compare this with

InM, [0(t)]=i[0(t)x [ X (¢)]de+

1000 5, [ X (1) X (1) iy +--




K, X ()X (5)- X (1) ] =

min(z.,t,,+1,,)

[ w(tr)wltye) (i, v)A(r)dr

")

= 0 /
Note: w(¢,7)=0V¢ <T.

— — —

u (1)=py fw(t.2)A(r)dr 5

K

oy (t

)

o
3

o (1) = (72 [ () w(inr)




Special case
w(t,r) = w(t—r)&l(r) =A

—
LUy, = ,uY/IT w(u)du \/

Ky (tl,tz) = <Y2>ﬂj w(u)w(t2 —tl,u)du




Evolutionary random process (Intutive explanation)

Consider {X l.(t)}N to be N zero mean, stationary

i=1

random processes with PSD S, ().

Consider the time interval 0 to 7" and divide Iinto
N segments.

Define a random process X (t) as

X(t):<

X, (¢) forO<t <y,
X, (¢) forey, <t <t,

(¢) for ¢, , <t<t,

49



X (t) IS a nonstationary random process
The PSD function of X (¢) can be written as

r

S, () for 0<z<¢

S, (1) =+ S, () for t,<t<t,

—

Sy (@) fore,, <t<t,

X (¢) is called a evolutionary random process.

50



Spectral representaiton of an evolutionary random process
Consider the representation

o0

X (t)= [ a(t.0)exp(iot)dz (o)

-—
—00

a(t,) = deterministic function (in general, complex valued)

Z (@) = orthogonal increment random process (complex valued)

with <dZ(a))> = O&<dZ(a)l)dZ* (a)2)> =5(w, - w,)d¥ (@)

W, W

> j ta)exp(za)t)<dZ(a))>=O
>

t , @0, exp[ W, — 1, )]<dZ(a)1)dZ (w2)>

51



t , 0, exp[ w,t, th)]<dZ(a)1)dZ*(a)2)>

e
———

(,, @, )exp| i (o, — wyt,) |6 (0, — @, ) dY (0, ,)

—— JE—
s

(t, w)exp| io(t,—1,) |d¥ (o )//

o2 .H ta)‘ d\P // 5\\\/(@) z @C@&u’

If ¥ (w) is differentiable, the above integral can be interpreted as the
Riemann integral and we get

[la(t,0) ®(w)do 4

—00




[la(t,0) ®()de

—00

We interpret S, (@) =la(t, a))‘2 ®(w) as the nonstationary
_——

(evolutionary) PSD function of X (¢).

_—

Remark
If X (t) =e(¢) Y (¢) where e(¢) is deterministic and
Y(¢) Is a zero mean stationary random process =

2
Ox

X (t) = Uniformly modulated nonstationary random process.

This does not take into account the variation of frequency
content with respect to time.
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Filtered Poisson Process models for earthquake ground motions
Rationale

During earthquakes slips occur along fault lines in an

Intermittent manner. This sends out a train of stress waves

In the earth crust. This eventually results in ground shaking.

Recall
N(T)/ /

X(t)=> Yw(tr,)0<t<T

N(T) = counting process, Poisson; arrival rate = 1(t)

—_—
—_—

T = arrival times: random




4

()=E(r?)[w? (to)a(c)de &

0

Reference
Y K Lin and G C Cai, 1995, McGraw Hill, NY.



Selection of the shape of the pulse

Model -1

As in Kanai Tajimi model, the soil layer is modeled
as an elastic half-space which can be represented as

a sdof system. ]AAJ*’“”

—

—_——

U+ 2n,0,u+ a)éu = 2;7ga)gR + a)f,Ré)/

2 2 - =
Hl(a)): COg+l nga)ga) 7 _ s

2

f/\_./ (a)g —w2)2 +(2;7ga)ga)) /

1-2y,
=SIN Wt +21,COSw,,t >0

hﬁ’: o, exp(—qga)gt)i\/l_iﬂg

N

J




