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Recall
We have developed methods to study systems governed by

MX +CX +KX+F (X, X)=G(z)
where X (0) & X (0) are specified,and G(¢) is a vector
random process.

The analysis has included characterization of response
moments, pdf-s of system states, and reliability measures.

The equations governing the behavior of structures
subjected to earthquake support motions have form
similar to the above equation.

Therefore, what are the issues that we need to consider
afresh?




Focus: uncertainties in vibratory response of
structures during an earthquake

* Stochastic models for ground motions

* Response spectrum, PSD and time histories
 Modal combination rules

e Seismic risk analysis

* Performance based structural design (PBSD)

Aim:

* To introduce the basic ideas and facilitate future self-study




Uncertainties in earthquake engineering problems

Earthquakes-

‘e\When, where, and how earthquakes occur
o T he details of ground motion

' The effect of ground motion on structure
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Dynamic response
Damage and loss




Alternatives for earthquake load specification

Monte Carlo
simulations

Time histories

AN

Spectral
estimation

Power spectral density

Spectrum
compatible
accelerograms

Duhamel’s integral

Extreme value theory

Spectrum compatibe PSD
using extreme value theory

Response spectra

Not suited for
reliability analysis
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Response spectrum
eEffect based model for earthquake ground acceleration

Equation governing total displacement

mi' +c(V' =v,)+k(V' -v,) =0

Relative displacement  v(z) =v'(z) - v, ()

m\'}+C\>+kv=—m\'}g

. . 2. e
= V+2nwv+o’v=-v,(f)




v(t) = j exp[-no(t —7)]sin[w, (¢ — 7)][-m¥, (r)]dz

ma, 1

— j exp[-nao(t—7)]sine, (t - )], (r)dr
a)d 0

n<0low o=

v(t) = ?exp[ e, (t}-7)]sin[o, (fF 0)I¥, (1)dr

v(t) = j v, (r)exp[-na(t - )] cos[m, (tf)]dr//

—nj v, (7) exp[-no(t —7)]sinjw, (t — 7)]d




Vi (t) = —i(\'/ -v,) —ﬁ(vt -v,)= -2nNw v — @V
m m

V' (1) = o (2n° —1)} v, (r)expl-nw, (t —7)]sin[w, (1 —7)]d7 -

-2no, j v, (7)exp[-nw,(t —7)]cos|w, (i —7)]d Z/

Remark
eSystems with the same 77 and @, respond identically
to the same ground motion.
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Response quantities of interest

V(1) :

e Maximum relative displacement

e[-orce in the spring (column) and hence the stresses

In the column are proportional to v(t)

Vt(f) . //

777%‘1‘)

oOf Interest in the study of secondary systems

ePounding of adjacent buildings
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Force in the spring

[ (@) = [V (8) = v, ()] = kv (2)

P
= maw-v(t)

= mA() =W A() /

o f (t) =Dbase shear

oA(t) = w’v(¢): has units of acceleration (pseudo-acceleration)

A(1)
g
e\Weight of the building x seismic coefficient= base shear

eBase shear x height of the building= base moment

o = seismic coefficient
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U = lkv2 (1) = 1 ma)zvzg)

2 2 —

1 , M.,
=—m|w v(t)|" ==V, (¢
Mol =5 0

-—

o/ = strain energy stored
ew,v(¢): has units of velocity

e

(pseudo-velocity)




Yotk G Sgch)

Let a family of sdof systems with
damping {n} and natural frequencies
{w_ } be subjected to a given ground
acceleration.

Let us determine the peak responses
over time as a function of {n} and {w,}.




Definitions

S, (n,@,) =max|v(t)| (Spectral relative displacement)

O<t<oo

S (17,@,) =max | v(¢)| (Spectral relative velocity)

O<t<oo

S (n,@,)=max|V ()| (Spectral absolute acceleration

O<t<oo

)

S .(n,)=w.S,(n ,) (Spectral pseudo acceleration)

S, (0,)=0S,0n 0, (Spectral pseudo velocity)

5/31/2012
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Definitions

Relative
displacement
Sa(®,,1) as afunction Relative velocity
Sy(®,1) \ Z; ang;gl:n'é o Absolute
. lerati
S.(v,,1) s called the acceleration
Spa(®@w?) |7 |response | Pseuldo "
acceleration
S, (®,,1) spectrum for _
Pseudo velocity




Spectrum

eConnotes "frequency" on x-axis.

o' Frequency" often refers to the frequency parameter used In
defining Fourier transform. In this context we talk of

time and frequency domain representations of signals.

e|n the context of response spectrum "frequency" is not the
Fourier frequency but the natural frequencies of a family

of sdof systems.

eOften period is plotted on the x-axis.

17




Limiting behavior of the spectraas @, — o

V+2nm,v+ o,y =—v, (1)

= lim a)v——v (7)

@, —>©

'\_’—s

= lim max &? | v(¢) |2 max\vg(t)\/

@, =0 0<t<o0 O<t<oo

= lim §  (7,0,) > max|v, (t)\Vn

@, —>0 O<t<oo

max |V, (¢) |= ZPA or PGA

O<t<oo

ZPA: zero period acceleration
PGA: peak ground acceleration
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Limiting behavior of response spectra as w, — 0

W(t) = — j exp[-no(t —7)]sinw, (t - )]V, (r)dz
@y %

. . SInflw, (t—7
lim v(z):jnm [, (1 =)
@, —0 Oa)n—>0 a)d

v, (r)dr

= j(r -7, (7)dT =V, (1)

= limv(z) > v (t)//

@, —0

= lim max | v(¢) |-> max | v, (f)|/

@, —>0 0<t<wo O<t<oo

= IImS (n, a))—>max|v (1)|Vn

O<t<oo
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t

7=0=S,,(0,m,) =max j v, (7)sine, (t—7)dz
0

—

t

S (0,w,) = max ji}g(r)cosa)n(t—r)df V4

O<t<oo
0

=8 ,0,0,)~S5,00,0,) except forverysmallw,.

O<t<oo

n=0=3S (0,0 )=max a)nji}g (r)sinw (t—7)dr
0

O<t<oo

S,.(0,,) =max| , j v, (7)sine, (t—7)dz
0

=5,0,0,)=5,,0,0,)=0S,0 0,)
n#0&0<n<02=S5,0,0,)=z0S,(0 0,)




Tripartite plots
S,(n®,),S,,(ne0,)&S, (1 0,)

Spv(n1a)n) — a)nSd (77’6011) -

1

S,(n,®,) =;Spv(77,wn) —

n

S.(nw,)=0S,6 0 0)—

n-— pv

log S, (7,0,)=109 S ,,(n,®,)+10g w,




Natural period s
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Why so many response spectra?

 Each response spectrum provides a physically
meaningful quantity

S, (n,0,) |Peakdeformation

S ,.(m,®,) |Peak strain energy

S .(,0,) Peak force in the spring
Base shear
Base moment




The shape of the response spectrum can be
approximated more readily for design
purposes with the aid of all three spectral
guantities than any one of them taken alone.

Helps in understanding characteristics
of response spectra.

Helps in constructing response spectra.

Helps in relating structural dynamics
concepts to building codes.
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Smooth design response spectra

S,.(T,17)
g
- Soil condition
Damping
PGA
o 1.0

Natural period s

PGA : arrived at based on seismic hazard analysis
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Factors that influence response
spectrum at a given site

Source mechanism

Epicentral distance

Focal depth

Geological conditions

Richter’s magnitude

Soil condition

Damping and stiffness of the system
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Alternatives for earthquake load specification

Monte Carlo
simulations

Time histories

AN

Spectral
estimation

Power spectral density

Spectrum
compatible
accelerograms

Duhamel's integral

Extreme value theory

Spectrum compatibe PSD
using extreme value theory

Response spectra

Not suited for
reliability analysis
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How to generate a response spectrum compatible with a given PSD?

X4+2n.0 %+ 0 x = —X,

X, (t) = Zero mean, stationary, Gaussian random process;
£, (1)~ N[0S, (o)]
X = ()

Py ()= exp[—v+ (a)T]

m

v (o) = exp(— “22]

270, ‘

with o7 = [ |11 () 5,, (o) &




For a given probability p, the corresponding « is given by

=exp| — O exp| — o T
P 270 20°

X X

1
112
=X :{—205 In{— 270 In(p) }

o. T

Let R(a)n,nn) be the given pseudo-acceleration response spectrum.
We interpret R(w,,7, ) as the p - th percentile point.

1

2

= R(w,,n,) =0’ {—20? In {— 0% |y (P)}} (typically p=84%)

o. 1




How to generate a PSD compatible with a given
response spectrum?

X4+2n 0 X +0'x = —X,

%, (1) = zero mean, stationary, Gaussian random process;

Xg (t) N N[O’Sgg (w):|
To a first approximation we assume

Gf = _[ ‘H(a))‘z Sgg (a))da)z

2

S, (@,)=(20,0,) (277;0 7 S, (@,)

n

H(e,)

(2n,0,)




-

= R*(w,,n,) =0 12—

\

S

(@),

21,0,

To a first approximation we thus get

nnRz (a)n’nn)

‘%@O%): . -
—In| —

1
w T

(P)

¢

27T
w. T

n

-/

In(p)




Steps
(1) Set iteration N=1
(2) Start with the initial guess on the PSD given by

“(@,.1,) //

—In| — -




- — 1M

(4)Evaluate R" (@,,7,) = w; {202 In| - 270, In(p)

o1
(5)Obtain an improved estimate of PSD using

2

sl 0]

(6)Stop iterations if the PSD function has converged,;
If not go to step 3.

N |~
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o

(o0}

Acceleration m/s2

Target
i Derived | |
I Pseudo acceleration |
response spectrum
% o % /\ %
\
/
0 0 1 (50 2(50 360 460 5(50 6(50 700

Frequency rad/s




PSD (m%s*)/(rad/s)

0.35

0.3

0.25

0.2

0.1

0.05]

0
0

Frequency rad/s

Derived
I Used |
100 200 300 400 500 600 700
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Time s
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Velocity m/s

0.2

-0.2

0.2

-0.2
0.2

-0.2
0

0.2

-0.2
0

0.2

-0.2

Time s

20
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0.02

-0.02 -

20

8

16 1

4

12 1

0

1

w jusweaoedsiq

AV

20

18

16

14

12

10

Time s




Variance(o?) = 1.0893 m?/s*
Std. deviation (o0 ) = 1.0437 m/s?
30 = 3.1311 m/s?

Maximum Minimum

Time history no. (m/s?) (m/s?)

1. 45063 > | -3.8202
2. 3.4130 (-3.4098 ™
3, 3.3419 -3.5512
4. 3.7498 -3.5094
5, 3.4756 -3.1706

Zero Peak Acceleration (ZPA) =3.2530 m/s2




— — Normal
Simulation

>
=
o
©
o
o
S
o

PDF of the simulated

samples
of ground acceleration

Acceleration m/32
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PSD (m%s%)/(rad/s)

0.35

0.3

0.25

0.2

0.15

0.1}

0.05

]

Target
Simulation

PSD function from 100
samples of ground acceleration

0

10

200

300 400
Frequency rad/s

500

600

700




Probablity

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

13

/‘

O

Simulation
— - — - Gumbel

Acceleration m/s2

|
4
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Response spectrum method provides
maximum response of sdof systems as
a function of natural frequencies and
damping ratios.

How to deal with mdof systems?

Hope :

MDOF systems can be decomposed into a set of
uncoupled sdof oscillators.

How can this be taken advantage of?
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Building frame under earthquake support motion

Mo
== —b—
X3
= Ha | | X | %3
T{; B, G~ ks
= My W e
ETy Ho ; b Y ] 2 i T3
™My o i E.;£! <2, 3 E;;
T =
En HI
7 -t o

>
o> I
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Equation of motion for total displacement

my

0
0

0 0]
m, O
0 my|

Cl+C2

c, + ¢

Relative displacement

0 |(x, || k+k,
—Cy3 1%, (| —k,
c; || %) O
ylle_xg

~k, O
ky+k, —k,
o k3 k3

y2:x2_xg

Equation of motion for relative displacement

0

‘m, 0
0 m, O
0 0 my]

2 _Cl+cz — G 0 ||n _k1+k2 —k,
Vort| =€ CptCy = Ny —ky  kytks
Vi) | 0 —C3 ¢ ||Vs)] 0 —k,

MY +CY +KY =—MT% (1)

r={ 1 1

/

X, kyx, (1) +cpx, (1)
X, p = 0
X, 0
y3 — x3 B xg
O ] yl mljég
—ky [§ Y, p=—ymyX, ¢
ks 13 \m3jég




MY +CY +KY =-MT% (1)

r={1 1 1"

Y =®Z

O'MP =1 & K®=Diag| ]| ® CO®=Diag|[2n,m,]

n

P'MOZ+P'CPZ+ D' KDZ =-0'MT¥,
=i +2n0z +wz, = 2,X, n=1 2,“',94/

{E} =—®'MT

z (t) =exp(—n o )[4 cosw, t+ B, sinw, ¢]
+ j =%, (), (t —7)d7 /
0




Displacement: y, (¢) = ﬁ:cb,mzn (¢) /
n=1

N t
=1 0

=

Elastic forces: F, = KY = KOZ = 0’ M DZ .~

N
Base shear: V, =) F,
n=1

N
Overturing moment: M, = x,F,,
=1




MV +CV + KV =-M{I}, (¢)
V=®Z OMDO=M OKDO=K
Mz +Cz +K z =-O'M{}, (t)=07,(¢)
{T,}=-0'M{1}

I

[" = modal participation factor
or modal excitation factor/




.. . 2 .
Vv+2nw,v+w,v="v,() //é——

V(1) =

1
a)l’l
rn

(05

v, (1)

V:CDZ:>Vk(t):Zp:

n=1

=V, (1) = Zp:m"n (2)/

-_—

Fn
Vi :q)an

n

max 7,,v,(t) = 7,5, (1,,@,)  max|V,(0)|=?/

Put

Dz, () =V, (1) = Zp:q)kn

jexp[—na)n (t—7)]sinlw,(t—7)]V, (7)d7

Fn
y
M

n
—_—

—_—

()

—"
S—




Spring force
F(t)=KV(t)=K®Z
Recall Ko, = w’M o,
= F, () = [0, ]M®Z

v, ()}

(0}

= F () =[o ]Mcb{]\r;

I
= F (t) = M DO{—-Z
() {M

n

MaxXx
O<t<T

F (1) ="




Base

shear

3

v, =3 F.() =<1> F. (1

I
V,=<1>MO L
’ {Mn : } )

Recall T=MO'{}=T"'=<1>MO

I, ;
\> VB:Ft{Fn } { FN}< E Z(t)
M
FN
/ M_NaN(t)
v, (1) = ﬁﬁz 0, max|V, (1)=7




N . .
Note : The quantity M has units of mass and is called

n

the effective modal mass.
2

N
I
Prove thatz " — total mass.

Total mass: M, =<1>M {1} &~
UB=0Z=>M{1}=MDZ
= O'M{L}=0'MOZ={M,Z,}

= (N} =(M,2,} =7, -

=M, =<1>M {1} —<1>MCD{

T VT
M. =<T.T,-T.>d—n -5 "n ED/
P =<DiTyely > g =D OED /

n




Modal combination rules : what is the basic problem?

EL" +mp+cy=0—"
y(0,1)=x,(1);»'(0,£) =0, EIy"(L,t) = 0; EIy"(L,1) = 0

y(x,t) = Z(x,t)+xg (t)l/»

= EIZ" +mz +cz =—m¥, (1) \\
z(0,¢1)=0;z'(0,¢) =0; EIz"(L,t) =0; EIz"(L,t) =0

x, (1)

53



Eigenfunction expansion

2(x.t) =Y a, (1), (x)

n=l —

withd, +2n wa +w'a, = VX, (t);n =12,---,0

el
—

What we know based on response spectrum based analysis?
a (t)‘;n =12, 0.

—_—

We know max

O<et<T

e d

What we wish to know?

> a, (09, ()

Max
O<t<T

 C—

Z(x,t)‘ = max
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Acceleration m/s2

Target
B Derived | |
Ols o | & 2 | | | | |
0 100 200 300 400 500 600 700

Frequency rad/s




Difficulty

Za
Remarks

eThe extrema of a, (¢) for n=1,2,---,c0 are likely to

occur at different times and they may have different signs.
eResponse spectra do not contain information on times at
which extrema occur nor do they store the signs of the extrema.

> a, (1), ()

of a,(¢); n=1,2,---,00 need to attain their respective extremum

)| # Z¢ ) max|a

0<t<T

MaX
O<t<T

can occur at a time instant #* at which none

—
———

® MaX
O<t<T

values.

56



Problem of modal combination rules

How best to obtain max|» a, (¢)4, (x)| in terms of

O<t<T

n=1
max|a, (t)‘ and the modal characteristics of the vibrating

system?

Modal characteristics: natural frequencies, mode shapes,
modal damping ratios, and participation factors.

These rules are formulated based on methods of random
vibration analysis.
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