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Probability of failure

P, = j Py (X)dX=jf|[g(X)]px (x)dx=<l[g(X)]>

g(x)<0

0= "1[o(x)]
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Variance reduction

T x)h, (x)dx: x:l{g(X)SO}pX(X): —
P- = [ FOOR, ()8 F 00 === 0R0 = B =(F (X)),

h, (v)i L9 (v) :’] Px (V)




Variance reduction

(a) Variance reduction can be viewed as a means to use
known information about the problem.

(b) If nothing iIs known about the problem, variance reduction
IS not achievable.

(c) At the other extreme, that is, when everything about the problem is
known, variance reduces to zero but then simulation itself is not needed.

(d) How do we get information about the problem?
- Perform a few cycles of brute force simulations and learn
something about the problem.




Sub-set simulations using Markov
Chain Monte Carlo (MCMC)

« S KAuandJL Beck, 2001, Estimation of small failure
probabilities in high dimension by subset simulation, Probabilistic
Engineering Mechanics, 16, 263-277

 J S Liu, 2001, Monte Carlo strategies in scientific computing,
Springer, NY.



Basic idea

eSmall failure probability can be expressed as a product
of larger conditional failure probabilities.

e These larger conditional failure probabilities can be
estimated with lesser computational effort.

e The method Is applicable to a wide class of problems




Subset simulation : motivation
my-+cy+ky+ f|y,y,t]=q(t);y(0),y(0) specified
q(t): Zero mean, stationary Gaussian random process.

No
= a,cos(a,t)+b,sin(m,t)

n=1

where a,,b, ~N(0,67), a, La Vn=k,b, LbhVn=k &

a, Lbvn ke[l N]; JS w)do= 270"

Letz(t)=h| y(t),y ,t] a metric of system performance.
We are interested in estimating Pl z(t)<z'vte[0,T]].

Note : The system parameters could also be random (6’)
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Remark

-I5F IS an unbiased and consistent estimator of P. with
minimum variance. The optimal variance Is given by

P.(1-P.)
2
GISF — = n F .




Subset simulations
F =|g(X)<0]="Failure event

Define
F,oF, o -2 F,=F such that

Fo=(F.k=12-m




Remarks

. =P(R)[[P(F.IF)

If F,-s are configured such that P(F,, | F;) and P(F,)

are much larger than P-, then we will be able to estimate

P. in terms of product of "large" probabilities.

Suppose, P- ~107°, then we could obtain an estimate of P-
as 10™° ~ (10_1) X (10_l ) X (10_1 ) X (10_l ) X (10_1 ) X (10_1 ) .
Estimation of probability of failure of the order of 0.1 can be

easily done using MCS because the failure events here are more
frequent.
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Remarks (continued)

m-1
P = P(Fl)HP(Fi+1 | Fi)
=1
P(F,) can be estimated using a "brute force" Monte Carlo.

P(F.,.|F),i=12,-,m-1can be estimated using MCMC.
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Steps

1. Run a brute force Monte Carlo using, say, 200 samples.
Evaluate the realization of the performance function at
these 200 points. Rank order the these realizations and pick

the 20" ranked member and denote the performance function
as g, . Define a new performance function g, (X )=g(X)-g,.
Define F, = g,(X)<0]
Clearly, P, = Estimate of P[ g,(X)<0]=0.1.
2. Store 20 members of X which lie in the failure region of gl(X )
3. Run 20 episodes of MCMC with each episode commencing from

one of the 20 points in faiure region of g, (X ). In each run continue

with the simulaitons till 9 points are obtained in failure region
of g, (X).
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Steps (Continued)
4. This leads to 200 points in failure region of gl(X ) Rank order the value

of g(X) at these 200 points and identify the 20" ranked member and denote
it by g,. Define a new performance function g, (X )=g(X)-g,.

Define F, = g,(X)<0]
Clearly, P, = Estimate of P[ g,(X)<0]g,(X)<0]=0.1.

5. Repeat this exercise till F = F is reached.
6. Obtain the final probability of failure by using

. =P(F)[IP(F..IF)
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Remarks
o The definition of F.-s (as In the present illustrative explanation)

ensures that B -s are all equal to 0.1.
e Estimates for sampling variance can be deduced.

e Cholice of proposal density function:
In standard normal space, typically shifted normal pdf.




Example
Let X = max\x |

i€[1,10]
{X, }.121 . zero mean Gaussian random variables with
covariance matrix given by
(X?)=1vie[110

<Xi Xj> =0Vi, j €[1,10] excepting

(X, X,)=0.3;(X,X5)=0.4;(X:X,,)=0.2
Question

Estimate P, (5) using subset simulations.
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Number of samples: 200 at each subset
Proposal pdf g ( X ={x})~N({x}.1)



Failure probability

Blue line:
Simulation with 10> samples
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g g, |9 | g | os| P

1 2.5388 1.5394 0.8291 0.1154 0.0 6.95E-05
P 2.4819 1.6062 0.8591 0.1662 0.0 i75E-05
3 2.4454 1.4920 0.6616 0.0 - 1.00E-04
il 2.2659 1.2125 0.4420 0.0 - 2.65E-04

m——L-




Example

25
X (t)=> a,cos(a,t)+b,sin(m,t)
n=1

1

a ~1HdN|O0,,|—
27T

b~ iid N| 0,

a 1bVvnke [525]
@, = 27N

X, = Mmax
0<t<10

X(t)

Question
What is P[ X, <8]?
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Number of samples: 200 per subset
Proposal pdf q(« X ={x})~N({x},0.41)

Brute force Monte Carlo with 10° samples
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Series representation for random processes : revisited
Karhunen - Loeve expansion
Preliminaries

Let f (t) be a deterministic function defined over \t\ < %

et us assume that f (t) Is well behaved in a suitable sense.

Consider a sequence of functions {4, (t)}" . Which satisfy

n=

completeness requirements and the orthogonality conditions

% (%,% = k N= ¥

j¢n (t)¢k (t)dtzénk = 2 nHL
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f (t) can be expressed in terms of the convergent series

f(t)=2 b (1)
n=1
with a measure of error of representation given by

total meansquare error given by
T

2

2

&= | {f (t)->b.¢, (t)} dt.
n=1

2

The constants b, can be determined using the conditions

E:O;kzl’z’...,oo

k




98 0 k=12, 0>

k

b, = j¢k (t) f(t)dt; k=12,---,00

17__:".’-
2

Question

Can similar formulation be developed for representing
random process X(t)?
Reference:

H K VVan Trees, 2001, Detection, estimation, and modulation

theory, Vol. I, John Wiley, NY p

—



Recall
Fourier representation of a Gaussian random process

Let X (t)be a zero mean, stationary, Gaussian random process defined as

X (t)=) a,cosm,t+b, sinm,t; o, =nw,
n=1

a, ~N(0,0,),b, ~N(0,0,),(a,a,) =0vn=k,(b,b, ) =0vn =Kk,
(a,b ) =0vn,k =12,

< > i{ cos a,t + (b >sina)nt}:o

n=1

o0

Ryy Zan COS@,T; Syy (@ Z 5(w-aw,)
=

— )

—

]
, S(a)n)Aa)n //
o- =

" 27

y4o)
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If X (t) Is mean square periodic we can use the Fourier
representation with uncorrelated coefficients.

X (t)=> a,cosa,t+b, sint; o, =na,
n=1
Can we obtain series representations with uncorrelated

coeffcients when X (t) is not mean square periodic?
Or, more generally, when X (t) Is not even stationary?
How can we proceed If X (t) 1s non-Gaussian?
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Consider x(t) to be a zero mean Gaussian random process
-not necessarily stationary

-not necessarily mean square periodic

Consider the series

— zangﬁn (t); [t < TE

Here {a,} " area set of random variables and {4, (t)}

n=1
are a set of deterministic functions such that
T

j¢ t)dt=6,, =a, = j¢k x(t)dt

2

We would like to select {4, (t)}

n=1

(a,)=0=> (x(1))= Y (a,)4, (1) =0

n=1

n

such that (a,a, ) = 1,5,
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()= Y adh (1) <

n=1

:x(tl):gangbn (t)

= (ax(t))=>"(aa,)d (1)

n=1
If we impose the requirement (a,a, ) = 4,5, We get

<X(t1) i 2 (t)x(t)dt> = A (L)

= [ RO x(O) =44 ()




f R, ( r)dz = Ag(t); ] % ﬁ@: A
s Km\J f Apran

Remarks
e This Is an integral eigenvalue problem.

eThe kernel R, (7,t) is nonnegative definite.

o4 (t) = eigenfunction; A=eigenvalue

eExact solutions are available for a few cases.
e Numerical solutions can be obtained by using
Galerkin's method
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Example

R, (7)=Pexp(-alr]) & S, (w) = a)fizz | —00 < () < o0

] Pexp(—alt—u|)¢(u)du = A¢(t)

T

jPexp[ (t- u]¢ u)du+| Pexp| —a (u- t]¢ (u)du=Ag(t)

t
leferentlate with respect to t

jP a)exp| —a(t—u)|¢(u)du+P
= 7

+jPaexp[ (u- t]¢ du—P=l¢5(t)
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t

j P(—cr)exp| —a(t—u) |¢(u)du +]t' Paexp| —a(u—t) |4(u)du=Ag(t)

T

2$(t) =—Pa exp(—ozt)jT exp(au)¢(u)du+ Pa exp(at)jexp(—auw(u)du

Differentiate with respect to t

25(t)= Pa* exp(~at) | exp(au)$(u)du - Parexp(~at)exp(at) (1
+Pa? exp(at)}exp(—au)¢(u)du —Paexp(at)exp(—at)é(t)

= —2Pa©+ Pa2] exp(—At—u|)¢(u)du //

= —2Pa¢(t)+




Ap(t)=—2Pag(t)+a’is(t)

e

#(t)=c, exp(ibt)+c, exp(ibt)
It can be shown that (Exercise) b -s are roots of the equation

(tan bT +@j(tan bT —%) -0 ////

(04
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ij:a2+bi2 1=12,---,00

4 (1) = COS_(bi;t))T (i odd)
\/'F[1+ SlgbiTi

é(t)= Sin_(bi;)bT — (ieven); |t|<T
ﬁ[l_mgbﬁi j

Remark

The eigenfuncitons are sinusoids (as in Fourier series)
but the frequencies are not uniformly spaced.

—



Example : Bandlimited white noise process
sina (t—u)

Ry (t,U) = 2 (=) Sxx(a)):7 for |w|<a

2 sina(t-u) il
/1¢(t):j£P o ¢(u)4d/u/
(1) F (t)—2tf (t) +(u—c?t?) \t\<1//
c—% 1 = eigenvalue @\ )

Eigenfunctions: angular prolate spheroidal functions
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Example
Consider x(t) to be the Brownian motion process
defined over 0<t<T.

(x ()>—O'R (t,u) =’ min(t,u)

e

A ja min(t,u)¢(u)du = aju¢ du+02tj[¢(u)du

/

T T

Ag(t)=c’tg(t)+ 0 [#(u)du—c’tg(t) = o [ #(u)du

w(t):_azqﬁ(u):¢‘5+%¢:o

1

o T* o (22 [ et
4 2 2,¢n(t)—(_|_j sm[(n O.S)T},O<t<T

(n—0.5)" 7
n=12---,0
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Series represetation of partially specified non - Gaussian
random processes using Nataf's transformation

Let X (t) be a random process whose first order pdf and
the ACF functions are available. No further informaiton about
the process is available.

X (t) need not be stationary.
How to represent X (t) in a series?
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Define Y (t) = \/0 //so that /
(Y (1)) =0&(Y*(t)) =1

Introduce a new random process Z(t) through the transformation
o[Z(1)]-R,[¥ (1]

Here ®|e|=PDF of N(0,1) random variable.

Z(t) is a zero mean Gaussian random process with an unknown

covariance function.
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(Y (t)Y(t,))= ]i O_EPY1{(1)[21]}PY1{CD[22]}¢(21, 2,;0, 0" ) dz,dz,

—

o (1) = j ]iPY1{(1)[21]}PY1{CD[22]}¢[21, 20,0 (t,t,) | dz,dz,

Remarks
eRHS is known and p" (t;,t,) is not known

"Pxx (t1’t2 )‘ Sl&‘p* (t1’t2 )‘ <1
o¢[zl, 2,;0,0 (1.1, )] = 2 —dimensional Gaussian pdf
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Solve the eigenvalue problem
T

fT R, (0)9(r)dr = 26 (1) <7

2 I

==

by using numerical methods.

N Z(t):gan¢n (t)/
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Monte Carlo simulation of response of systems
with spatially distributed random parameters

2
+ P(t
(1)

=

T

o {EII( )52@
( ) Yo (X)
3
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Remarks

4" order, 2-point stochastic boundary value problem
eEvolution of randomness In space and time
eMarkovian properties in space Is not possible jﬁi
eDiscretization of random fields Is also essential
eNatural frequencies, modeshapes, Green's functions
are all stochastic in nature. ~
oEl(X), m(x), and c(x) cannot take negative values
—> (Gaussian models are not valid
(especially when considering problem of reliability

evaluation)
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Approach: employ KL expansions for
El(x), m(x), and c(x).
Note: These processes are non-Gaussian in nature.
Assume that they are independent.
Discretization using KL-expansion and Nataf's transformation

El(X)=Mg, (X)+ 0 (X) R D[ (3 ag, (x)

[ :1

v -
KL expansion

m(x)=m, (x)+o, (X)R @ _ibn% (x)

c(x)=m,(x)+o,(x)R @ _idnwn (x)




deterministic properties
= Use method of wieghted residues (e.g., Galerkin's method)

to get
M(6)a+C(6)a+K(8)a=F(t) along with associated ics.

/ —

oM, C, K=random matrices (fully populated)
eStarting point for applicaiton of methods such as the subset

simulations



Summary

Simulations of random variables and random
processes

Fourier and KL expansions

Introduction to\statistical inference and estimation
theory

Introduction to calculus of Brownian motion and

implications on numerical simulations
Estimation of low probability of failure —
Variance reduction: adaptive procedures

\

Discretization of spatially varying random quantities.




