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Illustration of deterministic averaging procedure
ii+awqu=¢f(uu);t=0;u(0)&u(0) specified.
u(t)=a(t)cos| wyt+B(t)]

i(t)=—a(t)w,sin| wyt + B(1)]

a(t)=—"-sing(c) f[a(t)cosg(¢),~a(t) w,sing(1)]

Wy
,B(t)—woa(t)cow ) f| a(t)cosp(t),~a(t)w,sing(r) ]
a(t)= ———jsm¢f a CoS ¢, —am, Sin gld ¢
B(t)~- jcos¢f[acos¢ —am, sin pld ¢
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Extension to randomly driven systems
¥+ izh (x,%)+ Wi x :/gz(t)
((1))=0;(2(t)2(t+7)) = R. (r) & S ()
z(t) is taken to be broad banded.

eCharacteristic time constant of excitation>>«
charateristic time constant of the system

eTime duration over which R_(7) decays to 10% of
¢ . _ . .
R_(0) $ Time duration over which the impulse response

of the system decays by 90%.
oc IS small parameter.

£=0= x(t)=acos(myt+¢)=acos® Noxunk?

x(t) =—aw,sin(wyt +¢) = —aw, sSin®




e=0=

x(t)=acos(wyt+¢)=acos®;® =ayt + ¢
x(t)=—aw,sin(wyt +¢) = —aw, sin®

e20=

x(t)=a(t)cos| wyt +¢(t) | =a(t)cos®(¢)

(1) =-a(t)wysin| oyt +¢(t) |=—a(t) m,sin®(¢)

—

2
a= g—h[a cos D, —aw, Sin P |sin ® — #z(1) Sin®
W, @,
&l : 8Z(t)
¢ =——nh|acos®,—aw,sin®|cos® — cos ®
c:l-a)O ___aa)O

e¢No0 approximations till now.




Averaging
e TWoO stage
o Deterministic = Replace "regular" oscillatory terms
by their time averages
o Stochastic = Replace randomly fluctuating oscillatory
terms by delta correlated processes
First stage follows the procedure used in deterministic averaging.
The second stage is based on the application of the
Stratonovich-Khasminiski theorem.




Stratonovich - Khasminiski theorem
Consider the equation of motion

X=&f[X,t]+eg| X, t,Z’_(_t)];t >0; X (0) specified.
ec=a small parameter

X (¢) ~ nx1 vector of response processes

oY(t) ~ mx1 vector of random excitations
E[Y(¢)|=0;Y(¢) is broad banded.

According to the Stratonovich-Khasminiski theorem the

above equation can be approximated by a SDE
dX (t)=em(X)dt+o(X)dB(t) >




dX (t)=em(X)dt+o(X)dB(t)

D —
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Reference :

J B Roberts and P D Spanos, 1986, Stochastic
averaging: an approximate method of solving nonlinear
random vibration problems, Invited Review,

International Journal of Nonlinear Mechanics, 21(2),111-134.
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), aw, @,
2 S(a) P
d¢(t)z—aa)o G(a)dt—[ﬂ a(;): )] dB, (1)

e Forward equation : transient and steady state solutions
e One and two time moment equations

e Backward equation

e Reliability function

e GPV equations




FPK equation governing p(a,é;t | a,, ¢y;t,)

»__2 {_E_ZF(G)+”S(wo)}p o

ot da| | @ 2007, | 09|
7S(w)| &°p 1 &°p
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Steady state
o[ & zS(w,)] | o
O=——|{-- -2 -=G
2" o] o, )+ e }p_ a¢_{ (4)
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Remarks

0--2 <-5_F(a)+”5(”0)}p 9 {_ ¢

} b(asd 0 &)

”S(Q)O)“%ZP/F

— <o}

(4|%)

_I_
z 20; @a® 3
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Remarks (continued)
eThe transient solution of

P 2 _{—Z—ZF(a)+ ﬂsa(;?)}p_ n 7S(@,) 0% p %@(f(\%@

p(a;0|a0;0) = 5(a—a0)

can be obtained by using eigenfunction method.

eSimilar approximate solutions for first passage times
can also be obtained.

o The formulaiton can be generalized to deal with systems
with random parametric excitation such as in

u+82h(u u)+a)0 u+€g__ﬂ 8§ t_O u( ) (O) specified.

‘—

20 0a’

¢(¢)&¢&(¢): broad band, zero mean random excitations
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Special case i 4 e VUt @u= Z&)

——3

&°h(x,x) = 2nawy

2
p(a):%exp(— ¢ 2];O<ax<oo a

o 20
p(¢)=i;0<¢<27r
27T
2 7Z'S(a)0)
- 2nw; /

Note: compare this with results on envelope and peak
distribution obtained earlier.
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Remarks (continued)
e The method can also be generalized to deal with
systems with nonlinear stiffness:

i+ &°h(u,u)+ oy A(u [1+gg ] & (1)

t >0;u(0)&:i(0) specified
The definition of the envelope here needs to be modified

sutiably as

.« ? u
V(t):%Jra)gIA(s)ds
0

e
——

The method leads to a Markov approximation to the
process ¥ (¢).




Summary

eMethod of stochastic averaging enables us to study
envelope and phase processes associated with weakly
nonlinear system response to broad band excitations.

o The method also provides a framework to study

first passage problems for the response envelope.

e The method is best suited to the study of sdof systems




Monte Carlo Simulation Methods In
Stochastic Structural Dynamics




System

K’ m)'c'+cfc+g[x(t),5c(t)} = f(t);x(O) = xo;)'c(O) = X,
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Generate ensemble of
Inputs obeying prescribed

Process ense
using statistical tools and arrive

model for 1 (¢)

System

at probabilistic model for x(¢)

>
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Another perspective
Consider the problem of evaluation of the definite

b (\ —
integral 7 = j f (x)‘dx./ \ VX VY L\/—cf
a " o Y

/

This can be re-written as

1
b—a

1

b—a

1=(b—a)jf<x)( jdx=(b—a)jf<x)pX(x)dx

P —

where p , (x) :(

as the pdf of a random variable that is uniformly
distributed in a to b.

j;a < x < b 1s now Interpreted




Following this, the integral 1 Is
now Interpreted as an expectation

1=(b'a)<f(X)> Wit P () 7 UCMD}
where the expectation is evaluated with respect
to py (x). Furthermore, / is now approximated by

(b—a) <
~ ;f(X,-)

where X -s are uniformly distributed random numbers

] =

samples from p (x).
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500 runs with 500 samples

Estimate of |
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Estimate of PDF
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Ingredients of MCS

eMethods for generating samples of excitations

and system parameters compatiTIe with the prescribed
orobabilistic models

e Test statistically If the generated samples indeed obey the
prescribed probabilistic laws.

oA computational model for the system dynamics which
accepts samples of inputs and system paramters produced
above and generates an ensemble of respoWes.
eStatistical processing of ensmble of response time histories

and inferences on system behavior

We will begin with a review of elements of
statistical methods

28



Statistics

(a) Data (used in plural) (birth, death, marraige).
(b) Science of statistics (used in singular).

(c) Statistic: a random variéb\le; statistics: a set of random variables.
(It 1s in this sense that we use the word in the present course).

29




Average: a single number that describes data.

A material is described by its density, viscosity, stiffness, strength etc.

B )

In the same sense there exist different measures to describe data-

e.g., arithmetic mean, geometric mean, mode, median, percentile,
range, minimum, maximum, varianceétanda?d deviation, skewness,
kurtosis, histogram, cumulative frequency distribution, correlation, etc.

30



Population
Campus with 5000 persons.

Height X, X, - Xy
Weight ¥ Y, - Yoy
Income [, T Teono
specs? ¥ N - Y
gender M F --- F

In statistics each of this is a population.
That Is, population of heights, population of
weights, etc.

31



Population (Universe)
IS a collection of all possible observations on a particular
characteristic with respect to the problem on hand.

-starting point In statistics

-analogous to sample space in probability.
Any collection of measurements capable of being described
by a random variable constitutes a population.

32



Sample
In practice it i1s not possible to study the entire population.
Sample is a part of the population which we want to study
and draw conclusions about property of population.
-It 1S not enough to say that sample is a subset of population;

the subset needs to be representative.
Sampling: Procedure of drawing samples.
Sampling design: development of sampling procedures to meet
a requirement.




Random sample
Let X be a random variable with pdf p, (x).

Let {X,}" be asetof iid random variables with
common pdf p, (x).

The set of random variables {x,}" is called a random

sample of size n of X.
Consider the real valued function S(X,, X, -+, X, ).

n

This function is called a statistic. It 1s a random variable.

34



Let the pdf p,, (x) be of the form p, (x;0) where
@ = unknown parameter.

The joint pdf of {X.}f_l is of the form

Px.x,.x x1’x2’ Ty X I IpX

{x,} . =values of observed data taken from the random

sample.
An estimator of @ is a statistic S(X,, X,,---, X,)

denoted as ©=S(X,, X,,---, X,)

35



For a particular set of observations

X, =x,X,=x,,-+,X,=x,, the value of the

estimator S (x;, x,,---,x, ) is called as an estimate

of & and Is denoted by 0.
Estimator: a random varigble

Estimate: the realization of the estimator.




Consider a populatign of four numbers x=[1 2 3 4]t.
Population mean‘ —

N=1 N=2 N=3 N=4
Samples ean Samples | Mean \Samples | Mean Sample | Mean
1 a) 12~  |15. 23 2.0\ 1234 (25
2 7D 1,3 v 2.0 L 1,2,4 7/3 | Mean (2.5)
I 2,3,4 3.0 | Stddev_ | 0.0
> > L 134 \_[8/3 /
4 4 4 2;3 D) 25 Lo P I\/’Ie'an \(@ 6
Mean 2.5 24%) (309 | [stadev 104303
Stddev 11.29 ) 3,4« |35~
Mean 2.5 2"

N (2 -
std dev ({0.7071
NS § unilivg () F
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: 1<
Estimator: 7==) X,
- n .:1

-

The PDF of T is known as the sampling distribution of 7.
A realization of 7" Is known as an estimate.

The estimator is said to be unbiased if <T> = population mean.

The estimator is said to be consistent if lim Var(T) —0.

n—0

Estimation : Finding a realization of 7" as an approximation
to a population parameter.




Estimation of mean
Let X be a random variable with PDF P, (x), pdf p (x),

S

mean x, and standard deviation o.

==

—

Let {X,} " be an iid sequence with common pdf p, (x).
Thatis, X, L X Vi je[ln],
<Xl.> = U, I{ar [Xl.] =(12,pXi (x) =Py (x)‘v’i S [1,n].

Let ® =) a,X; be an estimator of 4.
=1

The estimator is said to be unbiased if (®©)=y.

—




Y a,=1= @ is an unbiased estimator of 4.
i=1
—> The above unbiased estimator Is not unique.

Var(@):Var{Zn:aiXi}z {Za (X, - ,u} =0 Za

7 i=1

To get an unbiased estimator with minimum variance,

——

we minimize

Var(0)= 02> a’ subject to the constraint n a. =1.
far(0)=0"2 4 2=t

Lagrangian 7

L= Gzzn:aiz + /I{Zn:ai —1}
i=1 i=1

40
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Necessary conditions for optima

a_L:O:>262ak+Z=O,k:112"n:>ak :_22/2 .
O

oa,
/ — >

oL < < A
a—l:O:;ai =1= ,Z-:(_ 2szzl
=1

20° ( 1 j 20° 1
ﬂ.« —_— = :> ak = — 2 - Y ak = —.

2
2 L 1 O
O .
2 n

—

1

The optimal Var(0©)

ummalry.

I
1< . : : .
@S an unbiased estimator of x with minimum
nia B

. - - 62
variance and the lowest variance |s@




Maximum likelihood estimation
Let X be a random variable with pdf p, (x;8).

Heréz IS a vector of parameters of the distribution.
For the moment assume that & iIs known.

Let {X,}  bean iid sequence of random variables

with the common pdf given by p, (x;6).




Consider now the function

leXZXn (x1)x2). ) .)x ;6) —

Py, (%.0) Py, (%,:0)-py ( pr x;:0)

_//

For example, If X Is exponentially dlstrlbuted,
py(x:2)=2exp(—Ax);x>0.

:> leXZXn (xl)'x"z;. ) ')xn ;9) —

A" exp(—ﬁzn:xi];xi > (0Vi e [1, n]

i=1




Clearly,

HPXZ. (xi ! Q)dxi =
i=1

P(x, <X, Sxj+dyNnx, <X, <x,+dx,n---Nx, <X, <x, +dx,).




Maximum likelihood estimation (continued)
et us now consider the case when @ 1s unknown and

let us observe a sample({x; } .

We Interpret ﬁpXi (x,;;0)dx; =L(0]|x,%,,+,x,)

i=1

—

as the likelihood of making the observation {x;} .

and

It is a function of observed samples { } the

unknown parameter vector 6.

Definition

The maximum likelihood estimator of & Is the value of
6 for which L(8]x,,x,,---,x, ) is the maximum.
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Example 1
Let X ~ Aexp(—Ax),;x=0.

L(A|t,t,),-,t,)=A" exp(—ﬁzn:tij
i=1

n

=InL(A]t,t,,-,1,)=nInA-2) 1,

i=1

Let 1 maximize this function.

0
a_/llnL(Mtl’tz’m’t”):O

A ‘O -
Recall (X) @d the above estimator is consistent
with the unbiased estimator with minimum variance
derived earlier.




Example 2
Let X ~ N(u, o).

- 1 1(/t\— 1 ?
L : t,t,"’,l‘ — e R
wolnt, n) 1,-:1[\/%0 " 2( o j

1 | 1 (t—u
L(/fl10-|t11t21...1tn):|: 272-0:| eXp _EZ( laﬂj .
- N i=1

InL(,u,O'|t1,t2,...,tn):—nln@—nl@_%i(gjz




|nL(u,<7|tl,tz,---,tn)=—nln\/27z—nlncr—1

Let 7 & o maximize the above function.

0
jalnL(ﬂ’Uthzf”’tn):O
&ilnL(,u olt,t,, -t ):O

80 ) 11421 ' Y n

=i= D

93

i=1

( .




Sampling distribution for the estimator of mean

: : 1
Consider the estimator @ == X,
ns

2
® Is an unbiased estimator of x with variance/ o

——

n

NI

Let us consider the case in which & is known:

If X is Gaussian, it would mean that {X}"_ isan iid

sequence of Gaussian random variables and consequently
® would also be Gaussian distributed.

If X is not Gaussian, by virtue of central limit theorem,
for large n, we may still consider ® to be Gaussian.
®—u

G/\/;

It may be infered that ® ~ N(ﬂ’ij or,

Jn

~N(0,1).




