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Recall

Markov Property
eReferes to a property displayed by conditional
PDF-s of random processes.

A scalar random process X (¢) is said to possess
Markov property if

P[X(tn) S xn |X(tn_1) S xn—l’X(tn_z) S xn—Z’.“
::P[X(Q)S“%LX(Q4)£xW1

for any » and any choice of O<¢, <1, <--- <t .




Diffusion process:
A Markov process with continuous state and

continuous parameter

Markov chain:
A markov process with discrete parameter

eMathematically, it is easier to deal with Markov chains.
e|n vibration problems, however, we are interested In
diffusion processes.




Example

Let { } be an 11d sequence of random variables.

i=1

Define
S, => 0,
i=1
n-1
S =0 +Z@i =0 +S

S, depends only upon §,_, and not upon {S}:

p(s,|s,.) is nota funciton of {S, = sl.}::

= S, IS Markov.
Also, pg (s]S,,=u)= Po. (s—u)




Simple random walk, absorbing and reflecting boundaries
Themodel S, =S _,+0 ;n=12,--

represents the model for a simple random walk.

Examplel

Consider an insurance company which starts business

with an initial capital of X, at time r =0. Let

Y, Y,,---,Y = premiums received

w,,W,,---,W = claims paid

Capital at time » IS given by

X, = Xyt (5 =)+ (Y, = W,) 4o (Y, - 1,)

Atany n, iIf X, <0, the company is ruined and it

can no longer perform. X, =0 is called an absorbing barrier.




Example 2 Gambler's ruin

Two gamblers A and B with capitals ¢ and b play a game
n number of times.

Game ends when

A wins all the capital b from B

or A loses all his capital a to B

X, = capital gain of A at the end of »" game.
X =-a and X = b are absorbing barriers.
This 1s an example of random walk with

two absorbing barriers.




Example 3 Daily water level inadam

b = capacity of dam

X, = volume of water in the dam on the »" day.
Y =inflow on n" day.

X executes a random walk In the interval O to b
X =0&X =b are the two reflecting barriers.




Types of questions

elNsurance company

What Is the probability of ruin of the insurance company
for a given X, ?

e TWo0 gamblers

What is the probability of ruin of A and B?

eDam filling

oWhat is the long-term equillibrium probability of
water level in the dam?

oWhat is the PDF of empty periods and non-empty
periods?




Example
Verify if an 1id sequence of random variables form a
Markov process.

.p(‘xn | xn—l’xn—Z’“.’xl) = p(‘xn | xn—l) = p('xn) [Yes]
Example

Let X (¢) = A+ Bt where 4 and B are iid random variables.
Is X (#) Markov? [No]

Example

Let 4, B,C and D be random variables. Consider

o[ 210

X (1
Investigate the conditions under which { ( )} Is Markov.

Y ()




Complete specification of a Markov process
oP(x;t)=P| X(1,)<x,]
oP(x,x,,8,)=P| X (t,)<x,| X (1)< x |P| X(

P(x1 Xy Xgr by, by, )

P[X( )< x| X (5) <, X (1) < x, Jo—
Pl X ( <x2|X( )<x |P X(tl)ﬁle
P[X( )<x, | X(8,)<x, |




Complete specification
Pl X(t,)<x,|X(t,,)<x,,

&P[X <x1]Vn& }

v=1

P[X(1,) <2, X(6,0) <2, ]Vn&{L ),




®
"~
S~
R
=
NS

TTPLr ()< 1X (1)<

v=2

eTransistional PDF of X () [TPDF|

Pl X(

)< x, | X(6,,)<x,,

o TPDF represents the evolution mechanism.
.P[X( +1)

=P| X (1

+1

%, | X (8,) <%, X (4,4) < x, 4
n+1|X <x:|




.P|:X n+1 n+1 | X( ) x X(tn_]_) < xn—1:|

= P[X +1 X1 | X < X }

n+1=Tomorrow

n = Today

n—1=Yesterday

Tomorrow's happenings depend on the what Is happening today and
and not on what happened yesterday!
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Recall : Model for dynamical systems using ODE - s

dy h[y :| =)Mo
Let t, >1,.

y(tz)zq[tz,y(tl),tJ

That is, solution at z, depends upon y(z,) and

notony(z) (0<z<t).

Markov property can be viewed as the stochastic
analog of the above property of ODE-s in deterministic
systems




eTransistional prbability density function |tpdf |

0
p(x X Vl)—aTP[X(tv)va|X(tv_1):xv_1}

|4

p(x1 Xyytoty X tz,---,tn):
(x ' |xn1 [ X, it 5y xl;tl)
P( Xy aitya | X, 238, 9, x11t1)
---p(x2 t, | x;t) p(x; 1)
=p (%, X5t 0) P(X, it 13,00,
e p(xgity [ %51 ) P )

= p(x,; t)Hp(x 1, | x, 38, 1)

—

S
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Remark
Markov process Is also completely specified in terms of

op(xv;tv | x, it 1)&p(x1,t)Vn&{ }V .
op(xv;tv,xv L, 1)‘v’n&{ } 1

p(xl"xZ’”"xn;tl’tZ’” ’ ) p(xl,t)Hp X, 58, | %, 45 vl)

o ~ 2
Multi-dimensional jpdf Initial pdf = y
g ~ Product of transistional pdfs
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Chapman - Kolmogorov - Smoluchowski Equation

v~ V7 v
Ve "

t=t I=1 t=t

p(xzitz;xl’ll) = p(xz’tz |x1,t1)p(x1,t1)

— .p(xz,tz;x,f;xl,tl)cﬁc

::p(xz,t2 |x,f;x1,t1)p(x,r | xl,tl)p(xl,tl)dx
—

wsz(xz,tz | x,7;x,8) p(x,7] x4 ) dx

:J‘p(xz,z‘2 |x,7) p(x,7]x,8)dx_—
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Consistency condition for the process to be Markov

P(xz’tz |x1’t1) ZIP(XZJZ |x,z')p(x,z'|x1,t1)dx
forall 7, <7 <¢,

Question
How to utilize this result in characterizing
response of randomly driven dynamical systems?
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Independent increment processes
Let X () be a random process with continuous state and

continuous parameter (time ).
Lets, <t, <---<t be n time instants.

Define X (1,,¢,) =X (¢,)— X (1)
X (#,,t,) is called the increment of X (¢) on [¢,1,).

If, forall 4, <z, <---<t,, the increments X (#,,2,), X (1,,4,),
- X (tn_l, tn) form a sequence of independent random variables,

then the process X (¢) Is said to be a process with independent
Increments.




Remark
Let X (¢) (¢=0)be a random process with

Independent increments.

Define Y (¢) =X (¢)— X (0) with (£>0).»—

Y (¢) is a process with independent increments and also
has the property P| Y(0)=0|=1//

Also, Y (t,.t,)= X (¢,4,t,)and has the properties of

Incremets of X (z).
Without loss of generality, therefore,

it may be taken that P| . (0)=0 |=1




Processes with independent increments possess
Markovian property

Define Y (¢)= X (¢) if P| X (0)=0|=1
=X (1)-X(0) if P X(0)=0]=1

= Y(#,)=0

Consider ¢, >¢t, _, >t _,>--->¢t>t,=0

and the associated random variables Y (z,),Y (¢, ), -
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ol
Denote Z _Y(tj)

Processes with independent increments possess

~Y(1,4)

= Z,(j=12,---,n) are sequence of independent

random variables.

Y(tn)zzn:Zj =7
j=1

+Y(¢,,)

= Y (t) is Markov.
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Generalization : Markov property for vector random processes
Let X'(z) be a vector random process with continuous state and
continuous parameter (time ¢).

Letz, <¢, <--- <t bethe n time instants.

This defines » vector random variables

X(4),X(8,),-,X(t,)

The vector process X (¢) is said to possess Markov property if

the »™ order conditional joint PDF

PlX(t,)<x, 1 X () <%, 0, X(1,,) <X, 50 X (1)< x|
=P X(1,)<x,|X(t,,)<x,, |

for any » and any choice of 1, <¢, <---<¢,.




The m-dimensional vector random process

X(0)=| X.(1) X, (1) - Xm(t)]t

IS said to be Markov iIf

P{ﬁ{Xj (tn) ij} | %(tn—l):yn—l’ {(tn—Z):yn—Z’.“’ X (tl) :)ﬁ}

i=1 —

- {H{Xj(tn)ﬁxj} | X(tnl)zyn)l}th >f > >

i=1

TPDF = P{ﬁ{){j (1) <x, f1X(1,4) = ynl}




Remarks

e A component of a vector random process (which itself is a

scalar random process) need not have Markov property

eDifferent components of a Markov vector random process

could be differentiable (in the mean square sense) to different
levels.

o|f a vector random process has independent random increments
(vectorially), the components of the random process need not have
Independent increments.




Consistency condition for a vector Markov process
(CKS equation)

p(is;ts ‘551;5) —
e

I .“....“p(i3;t3‘37;t2)p()7;t2‘xvl;tl)deJ’z”'dyn

—00 —00




Generalization : higher order Markov property

Let X' (¢) be a scalar random process with continuous state and
continuous parameter (time ¢).

Letz, <¢, <--- <t Dbe n time instants.

This defines » random variables
X(1),X(t,),X(t,)

X (¢) is said to possess 2" order Markov property if

Pl X(t,)<B|X(t,) <K 0 X (t,5) <X, X (1) <8 |
=P X(t,)<t, | X (t,4)<t,0, X (1, ,)<t,, |

for any » and any choice of 1, <¢, <---<t¢,.

The idea can be generalized to 3" and higher orders.




Markov process with stationary increments
X(¢) is said to be a Markov process with stationary

e ———

Increments 1If
p(xgity+7|x;t +7)=p(ogts | x50V, > 1, &7

< 13 _ tl >
A B
@ ®
L 3
< L4 >@® ®
C D
h+t t,+7T
1
t,—t, 3
tpdf tpdf

from Ato B fromCtoD
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Remarks
’p(xs;t3 |x1;t1) - p(xg;t3 trlxig -H-)

= tpdf can be written as p(x,; 7| x; );

I

7 = transistion time //

OIimp(xg;T | xl) —)p(x3;2')/
T—>0 e

eStationary Markov random process Is
completely specified in terms of the tpdf.

X (¢) is stationary = X (¢) has stationary increments.
o X (t) has stationary inrements need not mean

that X (¢) is stationary.




Kinetic equation
Let X (¢) be a scalar random process.

Let p, (x;¢) be the first order pdf of X (z).
Can we derive a differential equation satisfied by p, (x;7)?

Here x and ¢ would be the independent variables and p,, (x;¢)

would be the dependent variable. Thus the differential equation

that we are looking for would be a partial differential equation.
Furthermore, can we also derive the PDE governing

the n-dimensional joint pdf of X (z)?

NOta’[ion:p;(x;t) = p(x;t)

Reference: T T Soong, 1973, Random differential equations in science
and engineering, Academic Press, NY.
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Consider the random variables X (¢) & X (7 + At)

p(x,t+At): jp(x,x';t,t+At)dx'

:]ip(x;HAtlx';‘t)p(x';f)dx""(l)

S )

Define AX (¢)= X (z+At)— X (¢).

—_—

<exp LiuAX (1) X (1) = x’]> = Conditional characteristic

'
X .

function of AX (¢)given X (¢)
Denote @ (u, 7+ At| X (¢)=x") = <exp[iuAX(t) | X (¢)= x'}>.

1

@ (u,t+At| X (1) :x’)z]iexp(iqu)p(x;tJrAHX(t):x’)dx---(Z)

with AX(#)= X (¢+At)— X (¢) such that Ax =x—x"---(3).




O (u,t+At| X (1)

:x')z Texp(iqu)p(x t+At|X

:>p(x;t+At|X(t)

17 .
:E_J;Oexp(—zqu)(D(u,t+At|X(t)

Recall :f(x+h):f(x)+hf’(x)

') (O+u t+At|X() x)

= O (u,1+A| X (1) =

—Zu—d—d)(u t+At| X (t)=

o”lI

ZX')/

x)dx

:x’Ezu...(Af)L/
=

—

),

:g ’:! ([ax

()X (1)=x])




Recall : Characteristic function of a random variable

o0

Definition : ¢X(w):<exp(ia)X)>:_J;exp(ia)x)pX(x)dx

BESNEEESS s

—

p—

Here  is real valued. Thus, ¢, (@) is the Fourier transform of the pdf.

It can be shown that 1 d ¢X’|? ",
" do" |

By using inverse Fourier transform, it follows that

o0

Py (¥)= [ oy (0)exp(—iox)dy. _—

—0 —/
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Characteristic function of a random process

Definition :
Dy (“1 LUy, 1, u, zn):<exp{izn:u])((t] )}>
j=1
— T T ]? exp|:iiujxj:|p(xl;t x2 dxldxz -dx //
S o - j=1

Here {u |  is real valued.
-
o, (tistyieet,) = <Xj1 (&) X7 (8,) X" (¢, )>

0" D .
Ou;* Ouy? -~ o Px (ul’tl’uz’tz’”"“n’tn)

suchthatm=j, + j,+---+J .




p(xt+At|X )
U

%[Oexp(ium){ (i)

S
Il M8
o
— ||

n.

<[ "(£)] X (1) :x’}>}du

p(x;t+At|X( ) ) Zz;a (x t)ju eXp(—iqu)a’u

e,

with — — —

a,(x',t)= <[AX” ()1 X (1) = xr]>
:<[{X(Hm)—x(t)}” |X(t)=x’}>-~(5)

= Incremental moments

p(xt+At|X ) i (x t) ;z(iu)nexp(—iqu)du

=0




(1)

Recall

o0

j S (x)exp(iux)dx =1

0 0]

p(x;t+At|X(t):x'):ian
n=0

217rz(iu)n exp (~iudx)du--~(6)

e

a,(x',t)—3(Ax)--+(7)

A
g

dx




Substitute equation 7 in 1

plaitrar1x()=x) =31 (1) L) (0

nl dx

(
p(x,t+At)= j (x;2+ At x'58) p(x;2)dx’+-(1)

:i(_nll) ;’i zﬁ(Ax)a (x t)p(x t)dx




A=Y :
p(xt+ t) HZ:(; U g L

o0

= a, (x,t)p(x;t)-|- Z (—l')n d’ [an (x, t)p(x;t)]...(S)

= nl dx"

iy (5.0) = (AX° (1) X (1) = '>=1/

:>p(xt+At (x t)z

M8
H
I_I

(v1) p (1)
P _ i 2 2(_1)" L e, (xt) p(xit)]

Ot A—0 Af &




= n!

Z( ) [ xt)p(x;t)} /

o, (x,1) = |.mi<[x(¢+m)_x(t)]" X (1)=x)in=12

At—0 At
= Derivative moments

00 (_1)” an—l

/1(x, t) = —HZ_;‘ e [an (x,t)p(x;t)]
op OA /
+—=0
ot Ox /
eEquation of conservation of probability
Similar to equation of continuity in fluid mechanics.
eDiffusion equation

o (x,¢)=amount of probability crossing x in unit time
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Remarks

e The equation P + 04 = 0 has infinite order with
ot ﬁ/

respect to the spatial coordinate.

Therefore, its application is severely limited.
e[ heorem

R F Pawula,1967, IEEE Trans.

Information theory, 1T-13, 33-41

If the derivative moment «, (x,¢) exists for all

and is zero for some even n, then , (x,1)=0Vn > 3.




Implication:

There exist two cases of equation
op OA
ot ot
the order of the equaiton In x Is Infinite

and the other In which the order
IS 2 or less. We would be interested In
applying the Kinetic egaution for

= 0. The one in which

the case in which a, (x,7)=0Vn 2 3.




Proof of the statement :

If the derivative moment «, (x,¢) exists for all n and is zero for

some even 7, then a, (x,¢)=0Vn 2 3.
Let » >3 and let » be odd.

a, (x, t)_l!m)E<[X (1+At)- / (6)| 1 X (¢) > —

_I|m—<[X (t+A1)- } [X t+At)— X (¢ )]2|X(t)=x>

At—>0 At
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Apply the Schwarz inequality

o (x,1) < |.m_<[X e+ An)= X (0)]7 1 X (1) =)

At—0 Al‘

<[X(t+At)—X( )]"+1|X( t)= >

=>a’(xt)<a,,(xt)a,,(xt)Vn=23&n odd---(1)

T oee——

Similarly it can be shown that L
o’ (x, t) <, , (x, t)an+2 (x, t)Vn >4 &neven-- (2)




Let ¢, (x,¢) =0 where r is an even integer.
Let n=r—1,r+1,and using

al(x,t)<a, (xt)a,. (xt)Vn=3&n odd
we get

o’ (x, t) <a,._, (x, t)ar (x, t)‘v’r >4

o’ (x, t) <a, (x, t)ar+2 (x, t)Vr > 2

r+1




Letn=r—-2,r+2,and using
o’ (x, t) <a, ., (x, t)an+2 (x, t)Vn >4 &n even
we get

a’ (x, t) <a,., (x, t)ocr (x, t)Vr >0 |
(x, t)Vr >2 \

Otf+2 (x, t) <a, (x, t)ar+4




2
a,<a, ,aNrz4

2
a,faa,., =2

r+1

2
a ,<a _,aNr=6

2
a ,<aa,., Nr=2

r+2

Illustration:
Let «,=0 and «, exist for all ».

2 2
a.<aa ,Vrz2=a, =0
Vr>2=a; =0

0[2
= a, =0Vr>3

r+2 S ar ar+4




2
a ,<a. ,avVrz4

2
<aa,.,Vr=2

r+1

a

a’,<a _,aNr=6
Vr>2
Let «.=0 and «, exist for all n.

2
a.,<a.o

r+4

2 2 _
a,<aa Nrz22&a faa ,Vr22=a =0Vn>r

a’,<a_,aNr>26&a’, <a _,aVr24d=a =0Vn<r&n=>3
QED
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Remarks
eFor the case «, (x,t) = 0Vn > 3, the kinetic equation
takes the form

1 6°

Do (vr) ()] + oz @ (1) (i)

This equation is known as the Fokker-Planck equation.
Here

A(x,0) = (x.1) p(x;t)—%a—i[az(x,t) p(x)]

elnitial condition: p(x;¢=0) = p, (x)/
eBoundary conditions: different possibilities exist.




Boundary conditions
If X () takes values from - to o, then the BCS

are specified at +oo. These boundaries are inaccessible.

op o
ot ot

=0

= j apderj—dx 0

o0

:ajp(xtdx+_.-—dx 0

ot 2.
]ip(x () dx = 1:>j —dx %
A(—o0;t) = A(o0;t)

A stronger condition: A(—o0;z) = A(o0;¢
0

Still stronger condition: p(£o0;¢)=0 —
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If X (¢) can take values only in the bounded region

x, < X (t) < x,, then the Fokker Planck equation is

valid in this region with

op OA oA
8z‘+8z‘_oz>8tjp xtdx+f dx =0
= A(x;t)=A(x,;¢ //

A stronger condition: A(x,;¢) = A(x,;¢)=0

Still stronger condition: p(x;;¢) = p(x,;¢)=0
A(x;¢)=A(x,;t)=0: Reflecting boundaries
p(x;t) = p(x,;¢)=0: Absorbing boundaries
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Remarks (continued)
eWhen ¢, (x,¢) are independent of time, stationary

solutions might exist such that

op t—= L .
— =0 and one gets the simplified equation

8t
L (x)p(0)] 42 S () p ()] =

Ieadmg to the solution A(x) =0,




NN

Generalization of the kinetic equaiton for the case of a
vector random process

Let X (1) ={X,(¢),X,(t),-, X, (t)}" beam-dimensional

m

vector random process.
Consider the vector random variables X (¢) & X (¢ + At)

p(Rt+Al)= | p(Zi+At|%50) p(¥;1)dx

—00

e B TG a [ Gnta]

with

\.

=
S
S
3
—~~
o
~
N
|l
B =
L3
/\
—
1
e
A~~~
~
_|_
D .
~
N
I
e
~~
~
N
L 1
S
A~
~
S
||
=
\/

j=L

—_—
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Next Lecture

e How to derive the Fokker Plank equation for
response of dynamical systems driven by
random excitations.

e How to solve them?



