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Preliminaries

Discrete MDOF systems under deterministic excitations

Nature of equations of motion
Input - output relations in time domain
Input - output relations in frequency domain
Forced vibration analysis using modal expansion
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Remarks

•Equations of motion for MDOF systems are generally 
coupled

•Coupling between co-ordinates is manifest in the form of 
structural matrices being nondiagonal

•Coupling is not an intrinsic property of a vibrating system. 
It is dependent upon the choice of the coordinate system. 
This choice itself is arbitrary.

•Equations of motion are not unique. 
They depend upon the choice of coordinate system.
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Remarks (continued)

•The best choice of coordinate system is the one 
in which the coupling is absent. That is, the structural 
matrices are all diagonal.

•These coordinates are called the natural coordinates 
for the system. Determination of these coordinates for 
a given system constitutes a major theme in structural 
dynamics. Theory of ODEs and linear algebra help us.
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A frame with asymmetric plan under multi-component
support motions
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0 00 ; 0
,   and , in general, are non-diagonal

Equations are coupled
Suppose we introduce a new set of dependent
variables ( ) using the transformation 

( )
where  is a  tra
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How to uncouple equations of motion?
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Can we select  such that , ,&  are all ?
If yes, equation for ( ) would then represent a set of uncoupled 
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How to select  to achieve this?T
Consider the seemingly unrelated problem of
undamped free vibration analysis

0
Seek a special solution to this set of equations in which
all points on the sturcutre oscillate harmonically at the
sa
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Orthogonality property of eigenvectors
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Transpose both sides of equation (4)

Since & ,  we get
              (5)

Substract (3) and (5)

0

t
r s

t t t t
s r s s r

t t

t t
s r s s r

t
r s s r

R MR

R K R R M R

K K M M
R KR R MR

R MR





 





 





 

0    

0     

t
s r
t
s r

R MR r s

R KR r s

 

 

2

Normalization
1t

s s
t
s s s

R MR

R KR 







25

21 ( )

2 2 2
1 2

Introduce

Diag 

n n n

n

R R R

  


    

    





t

t

M I
K

  

   

Orthogonality relations

Select T  



26

 
   

 
   
   

   
 

 
   

   

0 0

2

0 ; 0

( )

( )

( )

( )

; 1,2, ,

How about initial conditions?
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How about damped forced response analysis?

 



 

 

 

of motion would still remain coupled.



29

If the damping matrix  is such that
 is a diagonal matrix, then equations would

get uncoupled.
Such  matrices are called classical damping matrices.

Rayleigh's proport
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Physical properties of the frame members
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Mode shapes
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Summary

• Normal modes of vibration of a structure are 
special undamped free vibration solutions such 
that all points of the structure oscillate 
harmonically at the same frequency with the ratio 
of displacements at any two points being 
independent of time. 

• Thus, for a structure vibrating in one of its 
modes, the phase difference between oscillations 
at any two points is either 0 or π.

• The frequencies at which normal mode 
oscillations are possible are called the natural 
frequencies.
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Summary (Continued)

• Modal matrix is orthogonal to mass and stiffness 
matrices. This helps is diagonalising the mass 
and stiffness matrices.

• Undamped normal modes, in conjunction with 
proportional damping models, simplify vibration 
analysis procedures considerably.
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Frequency domain input - output relations
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Frame in Example 1 under harmonic base motion
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Frame in Example 1 under harmonic base motion

 2x t
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Frame in Example 1 under harmonic base motion
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