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Gaussian random process
Let X(#) be a random process and consider its 1st and 2nd order pdf-s.
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Continuing further, consider » time instants {z,} " and

associated random variables {X (, )};.

1

Let the jpdf of {Xx (1)}

1=

, begiven by
pXX"'X(xl’x2’”"xn;tlitZ""vtn):

— exp[—%(x—n)t S_l(x—n)};—oo<xl. <ooVie[1,n]
(ZE)E‘S‘E

S, = <[X(fi )—my (¢, )}[X(tj ) — My (tj )}>

Note: S' =S &S is positive definite.
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x:[xl x2 e o xn]

Definition
X (¢) is said to be a Gaussian random process if the above form of

n

pdf is true for any » and for any choice of {7} .




Remarks
(a) A Gaussian random process is completely specified through its mean

m, (¢) and covariance C, (1,1, ).

(b) X (¢) is stationary = m (1) =my & Cyy (t,8,) = Cyy (8, — 1)

= Pxx (xlixz;tlitz):l?xx (x1’x2;tl _fz)
= X(¢) is 2nd order SSS= X (¢) is SSS.

(c) A stationary Gaussian random process with zero mean is
completely described by its autocovariance function or its
pdf function.

(d) Linear transformation of Gaussian random processes preserve the
Gaussian nature. Gaussian distributed loads on linear systems produce
Gaussian distributed responses.




Fourier representation of a Gaussian random process
Let X (t)be a zero mean, stationary, Gaussian random process defined as

X(t)=> a,cosm,t+b,sinw,t; o, =nw,
n=1

Assumptions

Here a, ~ N(0,0,),b, ~ N(0,5,),
<anak> =0Vn ¢k,<bnbk> =0Vn £k,
<anbk>:O‘v’n,k:1,2,---,oo

o0

= (X (1))=Y {{a,)cosm,t +(b,)sinem,t} =0

n=1




(X()X(t+7))= <i{an CoS® ¢ +b, sin a)nt}i{an cosm, (t+7)+b,sina, (t+ r)}>

- ii«an cosw,t+b, sin a)nt)(an]cos C%(t +7)+ b,sin a),ﬂ(t + 7))>

n=1 m=1

= ) 4ah 7 oot Cogion @)

= Ry (7)=) o’ cosw,r .
—1 =i + (57 Sinwat, &inwn GC)

Lak7=6%  (opy =Gat

X (¢) is a WSS random process.
X (¢) is Gaussian.

— X (¢) is a SSS process.




Fourier representation of a Gaussian random process (continued)

Consider the psd function

L1 s snsto-ngetorklL 1

_OO n=1

ZS )Aw, cos(w,7)

Compare this W|th

=) olcosw,r
n=1

, S(w,)Ao

By choosing o = ) ~, we see that the two ACF-s
7T

coincide.




By discretizing the psd function as shown we can simulate
samples of X (¢) using the Fourier representation

X(1)= i{“n cosw,t +b,sinw,t}; o, =na,

n=
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Simple random walk

Let {X,}  beaniid sequence of random variables
with

P(X=Ax)=p

P(X =-Ax)=¢q

such that p + ¢ =1.

(X)=P(X =Ax)(Ax)+P(X =—Ax)(—Ax)
=Ax(p—q)

(X?)=P(X =Ax)(Ax)" +P(X =—Ax)(-Ax)’

=Ax*(p+q)




Let ¢ be the time axis and let us divide the
interval (0,7) into n subintervals each of
width Ar such that

nAt =t.
Define

S(t)le::Xi

OOOOOOOOOO



Remarks
oS (¢) is known as a simple random walk.

¢S(¢) Is a discrete state, discrete parameter random process.
eConsider the limit of Ax >0 as Ar >0
—

Ax
mi(p-aq)——

lim (S) = I o

Ax—0 Ax
At—0 At—0

and
2

lim Var| S(z)] = lim 14pg ™ 50
N0 pollel Al

—

In the limit of Ax — 0 as Ar — 0, S(¢) becomes
a deterministic function.

This is not an interesting limit from probabilistic
point of view.




Wiener Process
Consider the following limit of the simple random walk

Ax? —>0as At — 0

with

Ax = GAL; p=1_1+”*@_; q:i_l—“*/A_t_
2_ o 2_ o

—

(S(1)) > wut

Var| S(1) |- o’

This Is an interesting limit!




Remarks
eThe resulting process is known as the Wiener process.

eThis Is a process with continuous state and continuous parameter.
e The process Is a Gaussian process (central limit theorem).

e The process Is nonstationary.
olf 11 =0, the process Is known as a Brownian motion process.




Random events and Poisson process

time ¢

Inter-arrival time

If there exists probability functions

parameter random process).

Let N(z) be the number of events occuring randomly in the interval (0,z].

Py (nt)=P|N(t)=n], Py (m.ti;ny.ty)=P| N(t,)=m "N(t,)=n, |-
then we say that N(¢) is a counting process (discrete state, continuous
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N(¢) is said to be a Poisson process with stationary increments if the
following conditions are satisfied

(@) Independent arrivals:
Thatis, P| N(4 )~ N(s,)=n|N(t)-N(s,)=m|=P| N(1,)=N(s,)

where (s;,4 | &(s,,t, ] are mutually exclusive and s, <#; & s, <t,.

(b)Stationary arrival rule:
P| N(t+dt)-N(t)=1|=P| N(t+dit+h)-N(t+h)=1|=Adt; A >0.

(c) Negligible probability for simultaneous arrivals:
P| N(t+dt)-N(t)=1|=Adt & P| N(t+dt)- N(t)>1|=0.

Under these conditions it can be shown that

P|N(t)=k|= (’ZI) exp(—At);k=0,1,2,---,00.

17




Proof

Py [n,t+dt|=Py[n,t|Py[0,dt]+ Py [n—1¢| P, |1 dt]
P, [0,dt]=1- Adt

Py [1,dt]=Adt

Py [n,t+dt|=Py|n,t]|(1-Adt)+ Py [n—1,¢| Adt

- PN[”’”O’;}‘PN[”J] — AP, [n]+ Py [n-10]A=A{P, [n-14]- B[]

:%PN[”’t]J”lPN[n’t]:’IPN[n_l’t]

= Py [n,t]= 4, exp(-At)+ jﬂexp[—i(t ~7)|Py[n-L7ldr

This equation can be used to recursively evaluate P, [nt] by varying n
asn=0,12,---

18




Thus with n=0, we have
P [0,6] = dyexp(—4e) + [ 2exp[ -A(t—7) ] B [-L e Jdz
0

Clearly, P, [-1,7]=P| N(r)=-1]=0

= P, [0,¢]= 4, exp(—At)

We have P, [0,0]=P| N(0)=0]=1 (- counting begins after s = 0)
=1= A4, = P, [0,t] =exp(—4¢)

Consider now n =1.

Py [Lt]= 4 exp(—At)+ j/zexp[—z(t ~7)|Py[0,7}d7

= A4 exp(—At)+ j/lexp[—i(t - r)] exp(-Az)dr

= A4 exp(—At)+ Atexp(—At)
We have P, [1,0]=P| N(0)=1]=0
= 0=4, = P, [Lt]|=Arexp(—A4t)
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Repeating this process for n =2,3,--- we get

Py[n,t]= (%) exp(—At);n=0,1,2,---,00

nl

Remark
If the stationary arrival rule is relaxed, the above model can be
modified to read as

Py [ni]= [4(r)dz | exp| ~[4(r)dz [in=01,2,,00

nl
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Random pulses
Here we construct a random process by viewing it as a superposition of pulses

arriving randomly in time.

N()
XW)= W, (t7,)

N (t) = counting process
W, (¢,7,)=arandom pulse that commences at time z, .

Consider the subclass

N(1)
X(y) = Z ka(t’ Tk)
k=1
Y, =1id sequence of rvs; independent of 7, Vk;indicate the intensity of the £-th event.

w(t,7, ) = a deterministic pulse arriving at time 7, ; w(z,7, ) =0Vs <7,.




By imposing the condition ¢ < T, we can write the above equation as
N(T)

X)=Y Yw(tz,), T>t
k=1

It can be shown that

t

m, (t) = mygw(t,r)/l(t)a’f,

min(z.z,)

CXX(tl,tz)zE(Yz) J w(tl,t)w(tz,r)/l(r)dr,&

0

a;(t):E(yz)EWZ(t,f)z(f)df




Example

Consider a random phenomenon E, which

occurs as a Poisson process

with constant arrival rate v.

Letz,z,,---,¢, be the times at which the event E occurs.
Let Z. be the random variable representing the
Intensity measure of E occuring at

the time instant ,.

Let Z,,i=1,2,--- be an iid sequence with common PDF P, (z).
Let Z,,, (¢) be the maximum value of Z, observed

over the time interval (O,t).




Consider

) (z)=exp [—vt {exp [—a (z- 2z, )}}J

This is the PDF of a Gumbel RV.

The above model has been used to
model the maximum earthquake ground
acceleration in the time interval O to t.




Differentiation and integration of random processes
Let X (¢) be a random process.

In formulating problems of mechanics

we need to differentiate random processes.

For example, if X(¢) is displacement,

we would be interested in velocity and acceleration.
Recall: for deterministic functions

dz . z(t+A)—z(t
£yt
By selecting a sequence of A-s, of the form {A;}
such that A;,; <A,

we obtain a sequence of numbers

z(1+ AA’) —z(1) and we seek to determine lim y,.
| i—>00

1

Vi =
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When X (¢) is a random process, the sequence

y - X(t+il.)-X(t) =12

l

IS a sequence of random variables.

What is meant by convergence of a sequence
of random variables?
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There are several valid modes of convergence of random variables.
Consequently, the associated calculus also would be built based
on a chosen mode of convergence of random variables.

Definition

A sequence of random variables X, X,,---, X ,--- Is said to
converge to the random variable X in the mean square sense if

Iim<(X—X.)2>—>O.

l
n—0

This is denoted by L.i.m. X, —> X.

n—>0

The calculus based on this definition of convergence of rvs is
called the mean square calculus.

This leads to the definition of mean square derivative and
mean square integral.

27




Consider

A—0 A 6t2
OR.. (¢t
R)G'((tl’tz): X};tl 2)
2

Similarly, it can be shown that

<X(11)X(t2)> =R, (tl’tz) _ 62R§Z(§2’t2)

& more generally,

d"X| d"x| \ 0""Ry(4.1,)
a’ |, at" | ot oty
=4 t=t,
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Remarks
(a) When we say that a random variable X exists
In the mean square sense?
Answer: when ¢ < .
(b) Thus for X (¢) to exist in the mean square sense, its
variance must be finite. This means,
i 0 Ry (11,1,)
h-t=t  Ot,0t,
(c) If X(¢) and Y (¢) are jointly stationary, show that

<d”X(t +7) a’mY(t)> () d"" Ry (7)

< 00,

dt" dt™ dr"™™"

29



Example : Show that for a zero mean, stationary
random process, the process X () and its

derivative X (t) are uncorrelated.

0 0]

R () =5 [ Su (@) exp(ior) o
:%w Sy (a))cosa)m’a) [ S vy (—50) =Sxx (a))]
R, (r) _ _dR);YT(T) — 217r ]3 oS (a))sin wTd W

—Q0




Example: Given Ry, (#,t,)=Amin(z,1,)
determine R, (1,1, ).

ORyy (4,1,)

=AIfr, <t
o, 25N

=01f ¢, >1,

= R (1:12) =AU (t, —t, )

ot

2
N a RXX (t]_’tZ) 225(11 _tz)




Example: Given R, (1,1, ) = At, + Amin(z,t,)

determine R, (1,1, ).

Ry (1,15) =1, ift, <t,
o,
=At+A 1t > ¢,
R
9 ngtl’tz)zﬂ,tlJr/lU(tl—tz)
2

2
:>8 Ry (8,8)

=A+A0(t, —
oot +A5(0 =)




White noise
R (Z') = 15(7) ~
S(a)) =/ ( W
Area under psd (=variance) — .

The process is physically unrealizable.

Analogous to a concentrated load in mechanics
and an impulse in dynamics.
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Two random processes
Consider xS ¥ N&EY b Lo b fuwdom

%) “K)
procesrer V\/UVVY
?%C %«\1 C:f-)j > JC‘){’L) V\/L/\/\/\/)
= P[mm <% () \(G\:?)S'i] \/\«Mvv
{& (?L\ Y '/'t‘) 3"29 = ‘D‘L.Fx\/@(’\3 jt‘){Z) bt t=ty
| ‘0ADYy
CX‘I (tix) = < (x ca) -mx G ) G My (*73]7
— _ fg B(\_’ (LY sk ,-\—,7){06- ﬂ\x(.{’\)’}.(gemv(:\?%t)d&_‘f

= Ct\"‘t:b)
. ¢ ﬁh’ oY vas o(é'b,’(,‘l,) Cﬁ\; |
Toint g; ~Z®> ) S CM@D ex b (IwT) T
\{ CQ\/‘ (=) = j’m&v‘ () exp G—‘w’é) dw
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