Stochastic Structural Dynamics

Lecture-7

Random processes-2

Dr C S Manohar

Department of Civil Engineering

Professor of Structural Engineering

Indian Institute of Science

Bangalore 560 012 India

manohar@civil.iisc.ernet.in

Multi-dimensional PDF, pdf

Mean, covariance,...

Stationarity: SSS, WSS

Eergodicty: Temporal and ensemble average

$$X(t) = a + bt + ct^{2}$$

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} \sim N \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\langle X(t) \rangle = \langle a \rangle + \langle b \rangle t + \langle c \rangle t^{2} = 0$$

$$\langle X(t_{1}) X(t_{2}) \rangle = a^{2} + b^{2} t_{1} t_{2} + c^{2} t_{1}^{2} t_{2}^{2}$$

$$X(t) \sim N(0, a^{2} + b^{2} t^{2} + c^{2} t^{4})$$

Ergodicty of a random process

Basic notion Equivalence of temporal and ensemble averages

Let x(t) be a sample realization of the random process X(t). We define the time average of a given function of X(t), g[X(t)] by

$$T_{av}\{g[X(t)]\} = \frac{1}{T} \int_0^T g[x(t)] dt$$

If X(t) is an ergodic random process, then $\langle g[X(t)] \rangle = T_{av}\{g[X(t)]\}.$

Definitions

• Ergodicity in mean X(t) is ergodic in mean if

$$T_{av}{X(t)} = \frac{1}{T} \int_0^T x(t) dt = \langle X(t) \rangle$$

• Ergodicity in the mean square X(t) is ergodic in meansquare if

$$T_{av}\{X^2(t)\} = \frac{1}{T} \int_0^T x^2(t) dt = \langle X^2(t) \rangle$$

• Ergodicity in autocorrelation X(t) is said to be ergodic in autocorrelation if

$$T_{av}\{X(t)X(t1+\tau)\} = \frac{1}{T} \int_0^T x(t)x(t+\tau)dt = \langle X(t)X(t+\tau) \rangle = R_X(\tau)$$

- The above list of definitions of ergodicity are not exhaustive: several other similar definitions can be constructed by considering other descriptors of the random process.
- 2. Ergodic processes are necessarily stationary in nature; a stationary random process need not be ergodic.
- Physically, ergodicity means that a sufficiently long record of a stationary random process contains all the statistical information about the random phenomenon.

5/31/2012

Ergodicity in mean

Let X(t) be a stationary random process with specified joint pdf structure

$$\eta_{T} = \frac{1}{2T} \int_{-T}^{T} X(t)dt$$

$$\Rightarrow \eta_{T} \text{ is a random variable}$$

$$E[\eta_{T}] = \frac{1}{2T} \int_{-T}^{T} E[X(t)]dt = E[x(t)] = \eta$$

$$\sigma_{\eta_{T}}^{2} = \frac{1}{4T^{2}} \int_{-T-T}^{T} E[X(t)]dt = \frac{1}{2T} \left[X(t_{1}) - \eta\right] \left[X(t_{2}) - \eta\right] dt_{1}dt_{2}$$

$$= \frac{1}{T} \int_{0}^{2T} \left(1 - \frac{\tau}{2T}\right) [R(\tau) - \eta^{2}]d\tau$$

Ergodicity in mean

X(t) is said to be ergodic in mean iff

$$\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} X(t)dt = E[x(t)] = \eta$$

$$\lim_{T \to \infty} \frac{1}{T} \int_{0}^{2T} \left(1 - \frac{\tau}{2T}\right) \left[R(\tau) - \eta^{2}\right] d\tau \to 0$$

Ergodicity in first order PDF

$$P_{X}(x,t) = P_{X}(x) = P[X(t) \le x]$$

$$Define$$

$$y(t) = 1 \text{ if } X(t) \le x$$

$$y(t) = 0 \text{ if } X(t) > x$$

$$\Rightarrow E[y(t)] = 1 \times P[X(t) \le x] + 0 \times P[X(t) > x] = P_{X}(x)$$

X(t) is said to be ergodic in first order PDF if y(t) is ergodic in mean

Ergodicity in autocorrelation

Define
$$\phi(t) = X(t)X(t+\tau)$$

$$E[\phi(t)] = E[X(t)X(t+\tau)] = R_{XX}(\tau)$$

X(t) is said to be ergodic in autocorrelation if $\phi(t)$ is ergodic in mean

- Criteria for ergodicity in other properties could be developed on similar lines
- •The above criteria are applicable if description of the random process is available.
- The notion of ergodicity plays a crucial role in relating observed data to mathematical models of uncertainties

Frequency domain representation of functions of time

Let x(t) be a deterministic function of time

Time signals

Type I : Periodic signals (well behaved) $x(t \pm nT) = x(t)$

Type II : Aperiodic signals $\lim_{t \to \infty} |x(t)| \to 0$

Type III: Aperiodic signals $\lim_{t\to\infty} |x(t)| \to \infty$

Type IV: Aperiodic signals $\lim_{t\to\infty} |x(t)|$ neither goes

to zero nor becomes unbounded.

A classification of time signals

Realizations of stationary random process belong to Type IV signals.

Type III signals

No hope of any frequency domain representation.

Type I functions

Periodic signals $y(t) = y(t \pm nT)$

Period: the smallest value of T for which the above condition is valid.

$$y(t) = P \sin \lambda t = P \sin(\lambda t + 2\pi) = P \sin \lambda \left(t + \frac{2\pi}{\lambda} \right) \Rightarrow T = \frac{2\pi}{\lambda}$$

$$y(t) = P\cos \lambda t = P\cos(\lambda t + 2\pi) = P\cos \lambda \left(t + \frac{2\pi}{\lambda}\right) \Rightarrow T = \frac{2\pi}{\lambda}$$

$$y(t) = P\cos \lambda t + Q\sin \lambda t = P\cos(\lambda t + 2\pi) + Q\sin(\lambda t)$$
$$= P\cos \lambda \left(t + \frac{2\pi}{\lambda}\right) + Q\sin \lambda \left(t + \frac{2\pi}{\lambda}\right) \Rightarrow T = \frac{2\pi}{\lambda}$$

$$y(t) = P\cos 2\lambda t = P\cos(2\lambda t + 2\pi)$$
$$= P\cos 2\lambda \left(t + \frac{2\pi}{2\lambda}\right) \Rightarrow T = \frac{\pi}{\lambda}$$

$$y(t) = P\cos \lambda t + Q\cos 2\lambda t$$

$$= P\cos(\lambda t + 2\pi) + Q\cos(2\lambda t + 2\pi) \Rightarrow T = \frac{2\pi}{\lambda}$$

$$y(t) = \sum_{n=1}^{N} a_n \cos(\frac{2\pi n}{T}t) + b_n \sin(\frac{2\pi n}{T}t) \Longrightarrow$$

Y(t) is periodic with period=T

According to Fourier's theorem, under general conditions, a periodic function y(t) can be represented by

$$y(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(\frac{2\pi n}{T}t) + b_n \sin(\frac{2\pi n}{T}t)$$

$$a_n = \frac{2}{T} \int_{-T/2}^{T/2} y(t) \cos\left(\frac{2\pi nt}{T}\right) dt$$
 & $b_n = \frac{2}{T} \int_{-T/2}^{T/2} y(t) \sin\left(\frac{2\pi nt}{T}\right) dt; n = 1, 2, \dots, \infty$

Recall

$$\cos \theta = \frac{1}{2} \left[\exp(i\theta) + \exp(-i\theta) \right] & \sin \theta = \frac{1}{2i} \left[\exp(i\theta) - \exp(-i\theta) \right] \Rightarrow$$

$$\begin{split} & y(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \left(\frac{\exp\left(i\frac{2\pi nt}{T}\right) + \exp\left(-i\frac{2\pi nt}{T}\right)}{2} \right) + b_n \left(\frac{\exp\left(i\frac{2\pi nt}{T}\right) - \exp\left(-i\frac{2\pi nt}{T}\right)}{2i} \right) \\ & = \frac{a_0}{2} + \frac{1}{2} \sum_{n=1}^{\infty} \exp\left(i\frac{2\pi nt}{T}\right) \left(a_n - ib_n\right) + \exp\left(-i\frac{2\pi nt}{T}\right) \left(a_n + ib_n\right) \\ & = \sum_{n=-\infty}^{\infty} \alpha_n \exp\left(i\frac{2\pi nt}{T}\right) \\ & \alpha_n = \frac{a_n - ib_n}{2}; \quad \text{with} \quad a_{-n} = a_n; \quad b_{-n} = -b_n \\ & \alpha_n = \frac{1}{T} \int_{-T/2}^{T/2} y(t) \exp\left(-i\frac{2\pi nt}{T}\right) dt \end{split}$$

sine, cosine, amplitude and phase spectra

x(t) is periodic with period T

$$x(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \{a_n \cos \omega_n t + b_n \sin \omega_n t\}; \quad \omega_n = \frac{2\pi n}{T}$$

$$a_n = \frac{2}{T} \int_0^T x(t) \cos \omega_n t dt & b_n = \frac{2}{T} \int_0^T x(t) \sin \omega_n t dt$$

- •The plots of a_n and b_n as a function of ω_n are called, respectively, as the Fourier cosine and sine spectra.
- •The plot of $\sqrt{a_n^2 + b_n^2}$ as a function of ω_n is called the Fourier amplitude spectrum.
- •The plot of $\tan^{-1} \left(\frac{b_n}{a_n} \right)$ as a function of ω_n is called

the Fourier phase spectrum.

Energy and power of a signal

If x(t) is a displacement function, $x^2(t)$ is a quantity that is proportional to potential energy. Similarly, if x(t) is a velocity function, $x^2(t)$ is a quantity that is proportional to kinetic energy.

We call $\lim_{s\to\infty} \int_{0}^{s} x^{2}(t)dt$ as the total energy in the signal.

We call $\frac{1}{T} \int_{0}^{T} x^{2}(t) dt$ as the energy per cycle (power) in the signal.

Total energy and power Discrete power spectrum

Total energy:
$$\lim_{s \to \infty} \int_{0}^{s} x^{2}(t) dt \to \infty \Rightarrow$$

Total energy is not an useful concept.

Energy per cycle= $\frac{1}{T}\int_{0}^{T}x^{2}(t)dt$ makes sense.

The plot of $\frac{a_n^2 + b_n^2}{2}$ as a function of ω_n is called the

discrete power spectrum.

Discrete power spectrum is an useful concept for Type I signals.

Type II signals

$$x_T(t) = x(t) \text{ for } 0 < t < T$$
$$x_T(t + nT) = x(t) \text{ for } n = 1, 2, \dots, \infty$$

$$x(t) = \exp(-0.2t)$$

$$x_T(t) = x(t)$$
 for $0 < t < T$
 $x_T(t + nT) = x(t)$ for $n = 1, 2, \dots, \infty$

 $x_T(t)$ belongs to Type I of time functions.

 $\Rightarrow x_T(t)$ admits a Fourier series representation.

Clearly,
$$\lim_{T\to\infty} x_T(t) \to x(t)$$
.

Question: What happens to Fourier series based description of $x_T(t)$ as $T \to \infty$?

$$x_{T}(t) = \sum_{n=-\infty}^{\infty} \alpha_{n} \exp\left(\frac{i2\pi nt}{T}\right)$$

$$\alpha_{n} = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x_{T}(t) \exp\left(-\frac{i2\pi nt}{T}\right) dt$$

$$x_{T}(t) = \sum_{n=-\infty}^{\infty} \left[\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x_{T}(s) \exp\left(-\frac{i2\pi ns}{T}\right) ds\right] \exp\left(\frac{i2\pi nt}{T}\right)$$

$$= \sum_{n=-\infty}^{\infty} \left[\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x_{T}(s) \exp\left(-i2\pi nf_{0}s\right) ds\right] \exp\left(i2\pi nf_{0}t\right)$$

$$x_{T}(t) = \sum_{n=-\infty}^{\infty} \left[\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x_{T}(s) \exp(-i2\pi n f_{0}s) ds \right] \exp(i2\pi n f_{0}t)$$

$$f_{0} = \frac{1}{T} \Rightarrow f_{n} = \frac{n}{T} & f_{n+1} = \frac{n+1}{T}$$

$$\Rightarrow f_{n+1} - f_{n} = \frac{1}{T} = \Delta f_{n} = \Delta f$$

$$x_{T}(t) = \sum_{n=-\infty}^{\infty} \left[\int_{-\frac{T}{2}}^{\frac{T}{2}} x_{T}(s) \exp(-i2\pi n f_{0}s) ds \right] \exp(i2\pi n f_{0}t) \Delta f_{n}$$

$$= \sum_{n=-\infty}^{\infty} X(f_{n}) \exp(i2\pi n f_{0}t) \Delta f_{n}$$

$$\lim_{\Delta f_{n} \to \infty} x_{T}(t) \to x(t) = \int_{-\infty}^{\infty} X(f) \exp(i2\pi f t) df$$

Definition: Fourier Transform pair

$$x(t) = \int_{-\infty}^{\infty} X(f) \exp[i2\pi ft] df$$

$$x(t)$$
 is aperiodic; $\lim_{t \to \infty} |x(t)| \to 0$

$$x(t) = \int_{-\infty}^{\infty} X(f) \exp[i2\pi ft] df$$

$$X(f) = \int_{-\infty}^{\infty} x(t) \exp[-i2\pi ft] dt$$

Power = $\lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} x^{2}(t) dt \to 0$ and hence not useful.

Total energy = $\lim_{s \to \infty} \int_{0}^{s} x^{2}(t) dt \to \text{ could be an useful quantity.}$

Energy spectrum is an useful concept

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) \exp(i\omega t) d\omega$$
$$X(\omega) = \int_{-\infty}^{\infty} x(t) \exp(-i\omega t) dt$$

x(t) and $X(\omega)$ are said to form a Fourier transform pair

Parseval theorem

$$\int_{-\infty}^{\infty} x^{2}(t)dt = \int_{-\infty}^{\infty} x(t) \left[\int_{-\infty}^{\infty} X(f) \exp(i2\pi ft) df \right] dt$$

$$= \int_{-\infty}^{\infty} X(f) \left[\int_{-\infty}^{\infty} x(t) \exp(-i2\pi ft) dt \right] df$$

$$= \int_{-\infty}^{\infty} X(f) X^{*}(f) df$$

$$\Rightarrow \int_{-\infty}^{\infty} x^{2}(t) dt = \int_{-\infty}^{\infty} |X(f)|^{2} df$$

Type III time functions $\lim_{t \to \infty} |x(t)| \to \infty$

$$\lim_{t\to\infty} |x(t)|\to\infty$$

No hope of any frequency domain representations

Type IV

Define
$$x_T(t) = x(t)$$
 for $0 < t \le T$ &
$$= 0 \text{ for } t > T$$

$$X_T(\omega) = \int_{-\infty}^{\infty} x_T(t) \exp(-i\omega t) dt$$

$$x_T(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X_T(\omega) \exp(i\omega t) d\omega$$

$$\lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} |X_T(f)|^2 df = \text{Total power}$$

$$\Rightarrow h(f) = \lim_{T \to \infty} \frac{1}{T} |X_T(f)|^2 = \text{power spectral density function.}$$

$$\Rightarrow h(f) df = \text{contribution to the total power made}$$
by the frequency components in the range $(f, f + df)$.

Type V: x(t) is a stationary random process

Let X(t) be a zero mean stationary random process.

Samples of X(t) belong to Type IV time histories.

⇒ For each sample the power spectral density function can be defined.

Definition:

Power spectral density function of X(t)

$$S_{XX}(f) = \lim_{T \to \infty} \frac{1}{T} \left\langle \left| X_T(f) \right|^2 \right\rangle$$

$$S_{XX}(\omega) = \lim_{T \to \infty} \frac{1}{T} \left\langle X_T(\omega) X_T^*(\omega) \right\rangle$$

$$= \lim_{T \to \infty} \frac{1}{T} \left\langle \int_0^T X(t) \exp(-i\omega t) dt \int_0^T X(t) \exp(i\omega t) dt \right\rangle$$

$$= \lim_{T \to \infty} \frac{1}{T} \int_0^T \int_0^T \left\langle X(t_1) X(t_2) \right\rangle \exp\left[i\omega(t_2 - t_1)\right] dt_1 dt_2$$

$$= \lim_{T \to \infty} \frac{1}{T} \int_0^T \int_0^T R_{XX}(t_2 - t_1) \exp\left[i\omega(t_2 - t_1)\right] dt_1 dt_2$$

$$= \lim_{T \to \infty} \frac{1}{T} \int_{-T}^T \left[T - |\tau|\right] R_{XX}(\tau) \exp(i\omega \tau) d\tau$$

If we restrict our attention to only those $R_{XX}(\tau)$ which satisfy the condition

$$\lim_{T \to \infty} \frac{1}{T} \int_{-T}^{T} |\tau| R_{XX}(\tau) \exp(i\omega\tau) d\tau \to 0,$$
we get the relations
$$S_{XX}(\omega) = \int_{-\infty}^{\infty} R_{XX}(\tau) \exp(i\omega\tau) d\tau$$

$$R_{XX}(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{XX}(\omega) \exp(-i\omega\tau) d\omega$$

$$S_{XX}(\omega) = \int_{-\infty}^{\infty} R_{XX}(\tau) \exp(i\omega\tau) d\tau$$

$$R_{XX}(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{XX}(\omega) \exp(-i\omega\tau) d\omega$$

$$\left| (1) R_{XX} \left(\tau \right) = \left\langle X \left(t \right) X \left(t + \tau \right) \right\rangle = \left\langle X \left(t \right) X \left(t - \tau \right) \right\rangle = R_{XX} \left(-\tau \right)$$

$$(2)S_{XX}(\omega) = \int_{-\infty}^{\infty} R_{XX}(\tau) \exp(i\omega\tau) d\tau$$

$$= \int_{-\infty}^{\infty} R_{XX}(\tau) (\cos \omega \tau + i \sin \omega \tau) d\tau$$

$$= \int_{-\infty}^{\infty} R_{XX}(\tau) \cos \omega \tau d\tau \quad \{\because R_{XX}(\tau) = R_{XX}(-\tau)\}$$

$$= 2\int_{0}^{\infty} R_{XX}(\tau) \cos \omega \tau d\tau$$

$$(3)R_{XX}(0) = \sigma_X^2 = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{XX}(\omega) d\omega.$$

 \Rightarrow Area under the PSD function is the variance of the process.

 $(4)S_{XX}(\omega)d\omega$ = contribution to the total average power (variance) made by frequency components in the range $(\omega, \omega + d\omega)$.

$$\Rightarrow S_{XX}(\omega) \ge 0$$

$$(5)S_{XX}(-\omega) = \int_{-\infty}^{\infty} R_{XX}(\tau) \exp(-i\omega\tau) d\tau \qquad \text{(Substitute } s = -\tau)$$

$$= \int_{-\infty}^{\infty} R_{XX}(-s) \exp(i\omega s) ds$$

$$= \int_{-\infty}^{\infty} R_{XX} (-s) \exp(i\omega s) ds$$

$$= \int_{-\infty}^{\infty} R_{XX} (s) \exp(i\omega s) ds = S_{XX} (\omega)$$

(6)
$$R_{XX}(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{XX}(\omega) \exp(-i\omega\tau) d\omega$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{XX}(\omega) (\cos \omega \tau + i \sin \omega \tau) d\omega$$

$$= \frac{1}{\pi} \int_{0}^{\infty} S_{XX}(\omega) \cos \omega \tau d\omega$$

(7) Physical PSD function (defined only for $\omega \ge 0$)

$$G_{XX}(\omega) = 2S_{XX}(\omega) \text{ for } \omega \ge 0$$

=0 for $\omega < 0$

Area under $G_{XX}(\omega)$ would still be the variance of the process.

PSD

$$\frac{S_{XX}(\omega)}{\sigma_X^2}$$
 has properties similar to a pdf

Units of PSD: $\frac{\left[\text{Units of } X(t)\right]^2}{\text{frequency}}$

Ex: X(t) is displacement

Units of PSD: $\frac{m^2}{Hz}$ or $\frac{m^2}{(rad/s)}$

Similarly, if X(t) is acceleration

Units of PSD: $\frac{(m/s^2)^2}{Hz}$ or $\frac{(m/s^2)^2}{(rad/s)}$

(8) Wiener-Khinchine relations

$$S_{XX}(\omega) = 2\int_{0}^{\infty} R_{XX}(\tau) \cos \omega \tau d\tau$$

$$R_{XX}(\tau) = \frac{1}{\pi} \int_{0}^{\infty} S_{XX}(\omega) \cos \omega \tau d\omega$$

 \Rightarrow

$$G_{XX}(\omega) = 4 \int_{0}^{\infty} R_{XX}(\tau) \cos \omega \tau d\tau$$

$$R_{XX}(\tau) = \frac{1}{2\pi} \int_{0}^{\infty} G_{XX}(\omega) \cos \omega \tau d\omega$$

A few examples of covariance and psd function pairs

$$R(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S(\omega) \exp(j\omega\tau) d\omega \quad S(\omega) = \int_{-\infty}^{\infty} R(\tau) \exp(-j\omega\tau) d\omega$$

$$\delta(\tau) \qquad 1$$

$$\exp(j\beta\tau) \qquad 2\pi\delta(\omega-\beta)$$

$$1 \qquad 2\pi\delta(\omega)$$

$$\cos\beta\tau \qquad \pi\delta(\omega-\beta) + \pi\delta(\omega+\beta)$$

$$\exp(-\alpha|\tau|) \qquad \frac{2\alpha}{\alpha^2 + \omega^2}$$

$$\exp(-\alpha\tau^2) \qquad \sqrt{\frac{\pi}{\alpha}} \exp(-\frac{\omega^2}{4\alpha})$$

$$\exp(-\alpha|\tau|)\cos\beta\tau \qquad \frac{\alpha}{\alpha^2 + (\omega-\beta)^2} + \frac{\alpha}{\alpha^2 + (\omega+\beta)^2}$$

$$2\exp(-\alpha\tau^2)\cos\beta\tau \qquad \sqrt{\frac{\pi}{\alpha}} \left\{ \exp\left(-\frac{(\omega-\beta)^2}{4\alpha}\right) + \exp\left(-\frac{(\omega+\beta)^2}{4\alpha}\right) + \right\}$$

$$\frac{\sin\sigma\tau}{\pi\tau} \qquad \begin{cases} 1 & |\omega| < \sigma \\ 0 & |\omega| > \sigma \end{cases}$$

Typical psd function of wind velocity

$$G(\omega) = c_0 \frac{1}{\left[2 + \left(\frac{873.6\omega}{u_0}\right)^2\right]^{\frac{5}{6}}}$$

Typical psd function of waves

$$G(\omega) = c_0 \frac{1}{\omega^5} \exp\left(-\frac{c_1}{\omega^4}\right)$$

Typical psd function of earthquake ground acceleration

$$G(\omega) = c_0 \frac{1 + \left(\frac{\omega}{\omega_g}\right)^2}{\left[1 - \left(\frac{\omega}{\omega_g}\right)^2\right]^2 + 4\eta_g^2 \left(\frac{\omega}{\omega_g}\right)^2}$$

Evolutionary random process

Consider a random process X(t) defined as

$$X(t) = V_1(t)$$
 if $0 < t < t_1$

$$\&X(t) = V_2(t) \text{ if } t > t_1.$$

Let $V_1(t) \& V_2(t)$ be zero mean, stationary random processes

with psd functions $\{S_{VVi}(\omega)\}_{i=1}^{2}$.

⇒ We can write

$$S_{XX}(\omega,t) = S_{VV_1}(\omega) \text{ if } 0 < t < t_1$$

$$S_{XX}(\omega,t) = S_{VV_2}(\omega) \text{ if } t > t_1$$

This notion can be generalized to define nonstationary random processes with time dependent psd functions.

Such processes are called as evolutionary random processes.