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Ergodicty of a random process

Basic notion
Equivalence of temporal and ensemble averages
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Let x(t) be a sample realization of the random process X (t). We define the
time average of a given function of X(t), g[.X(¢)] by

1 ;T
Tulgl X} = 7 [ gle(t)]d

[f X(t) is an ergodic random process, then < g[X(t)] >= Ta {g[X(t)]}.




Definitions

e Ergodicity in mean X (f) is ergodic in mean if
T X (1) f r(t)dt =< X (t

e Ergodicity in the mean square X (1) is ergodic in meansquare if
T [ X2(1)) Tf (At =< X2(1) >

e Ergodicity in autocorrelation X(f) is said to be ergodic in auto-
correlation if

T { X ()X (t147)) Tf ()2 (t+7)dt =< X ()X (t47) >= Ry (7
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Remaraks

1. The above list of definitions of ergodicity are not exhaustive: several
other similar definitions can be constructed by considering other de-
scriptors of the random process.

e

Ergodic processes are necessarily stationary in nature; a stationary
random process need not be ergodic.

3. Physically, ergodicity means that a sufficiently long record of a station-
ary random process contains all the statistical information about the
random phenomenon.
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Ergodicity in mean

Let X(t) be a stationary random process with specified joint pdf structure

1T
=— | X(t)dt
i ZT_jT (t)

= 1y 1S a random variable

E 7 ] =% j E[X (t)ldt = E[x(t)] =7

T T

1

ol = 4T2HE[ (X (t) -1} {X(t,) -7} dtdt,

T-T

14 . :
=?M1-EJ[R(T)—77 Jdz




Ergodicity in mean

X(1) is said to be ergodic in mean iff

4mﬁjmmv[mﬂ

] 12T T 2
lim (1—5$)[R@ﬁ—47]d7—90



Ergodicity in first order PDF

Py (X,t) = Py (x) = P[ X (t) < x]

Define

y(t) =1if X (t) < x

y(t) = 0if X(t)> X

= E[y(t)|=1xP[X(t) <x]+0x P[X(t) > x| =Py ()

X(1) is said to be ergodic in first order PDF if y(t) is ergodic in mean




Ergodicity in autocorrelation

Define
o(t) = X() X(t+7)
E[a(t)|=E[X )X (t+7)]=Ry ()

X(1) is said to be ergodic in autocorrelation if ¢(t) is ergodic in mean




Criteria for ergodicity in other properties
could be developed on similar lines

*The above criteria are applicable if description of
the random process is available.

*The notion of ergodicity plays a crucial role
In relating observed data to mathematical models
of uncertainties




Frequency domain representation of functions of time

Let x(t) be a deterministic function of time

Timesignals

t—w

Type I11 : Aperiodic signals lim

t—o0

Type IV : Aperiodic signals lim

t—o0

Type | : Periodic signals (well behaved) x(t +nT ) = x(t)
"ype 11 : Aperiodic signals lim|x(t) —0

(1)
(1

to zero nor becomes unbounded.

—> 00

neither goes
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A classification of time signals

600

400

X(t)

200

Type |
10 20 30 40
t
Type lll
10 20 30 40

k Type Il
= 0.5
X
O
40
4
Type IV
2
2 0
X
-2 W\W{m
-4 ‘
0 30 40




Remarks

Realizations of
stationary random
process belong to
Type IV signals.

Type 11 signals
No hope of any
frequency domain
representation.
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Type | functions

Periodic signals  y(t) = y(t£nT)

Period: the smallest value of T for which the
above condition is valid.

y(t) = Psin At = Psin(At + 27z) = Psin /’L(t+27”j:>T :27”
27 27
y(t) = Pcos At = Pcos(At +2x) = Pcosi(t+7j = ==




y(t) = Pcos At + Qsin At = P cos(At + 27) + Qsin(At)

= Pcos/’t(t+2—”j+Qsin/1(t+2—ﬂj:>T :2—77
A A A
y(t) = Pcos2At = Pcos(2At + 27)
=Pcos24 t+2—ﬂ -T==2
24 A
y(t) = Pcos At + Q cos 24t
27T

=Pcos(At+27)+Qcos(2Ut+27) =T = —




N
y(t)=>a, cos(z?ﬂnt) iy sin(z?mt) -
n=1

Y(t) is periodic with period=T

According to Fourier's theorem, under general conditions,
a periodic function y(t) can be represented by

ia cos(—t) +b, sm(—t)

2 T/2 2 T/2 27ﬂ1t |
an:? j Y(t)COS( T jdt & b =— _[ y(t)sm( T jdt,nzl,z,--- 00

—T/2



Recall

c0sé = %[exp(i 6)+exp(-if)] & sinf= %[exp(i 6)—exp(-ig)|=
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sine, cosine, amplitude and phase spectra

X(t) Is periodic with period T

X(t) =

o0

a _ 27N
?OJF nZ:;{an cosa,t+b,sinath @, = —

2 | 2 |
a, =—jx(t)cosa)ntdt & b, =—Ix(t)sin w, tdt
T 0 T 0

eThe plots of a, and b, as a function of @, are called,
respectively, as the Fourier cosine and sine spectra.

eThe plot of \/aﬁ +b’ as a function of o, is called

the Fourier amplitude spectrum.

N
The plot of tan™ [b—” as a function of @, is called

d, y,
the Fourier phase spectrum. 20




Energy and power of asignal

If x(t) is a displacement function, x*(t) is a
quantity that is proportional to potential energy.
Similarly, if x(t) is a velocity function, x*(t) is a
quantity that is proportional to kinetic energy.

S

We call lim | x*(t)dt as the total energy in the signal.

S—0
0

.
We call % J' X (t)dt as the energy per cycle (power)
0

In the signal.




Total energy and power
Discrete power spectrum

S

Total energy: lim | x*(t)dt — o0 =

S—
0

Total energy is not an useful concept.
T

Energy per cycle:%j x*(t)dt makes sense.

0
2 2

The plot of % er " as a function of @, is called the

discrete power spectrum.
Discrete power spectrum is an useful concept for Type | signals.
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Type |l signals

Xr (t)=x(t) for0<t<T

X (t+nT)=x(t) forn=12,---,00

x(t)=exp(-0.2t)

|
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Xr (t)=x(t) for 0<t<T
X (t+nT)=x(t) forn=12,---,0

X; (t) belongs to Type I of time functions.

= X; (t) admits a Fourier series representation.

Clearly, limx; (t)— x(t).

T—>o0

Question: What happens to Fourier series based
description of x; (t) as T — «?




127Nt

exp(i2znfgt)




-
0 2
X (t)=> Tiij(s)exp(—iZnnfos)ds exp(i2znfyt)

;
2
X (t)=> ij(s)exp(—iZﬂnfos)ds exp (i2zznft)Af,

= 37 X (f, )exp(i2znf b Af,

N=—o0

lim x; (t) > x(t)=

Af, >0

X (f)exp(i2z ft)df

é"—‘oS




Definition: Fourier Transform pair

x(t) is aperiodic; tIim‘x(t)‘ —0

(1) = [ X ()explizeft]df
X ()= [ x(t)exp[-izrft]dt

;
Power = lim iJ‘xz (t)dt — 0 and hence not useful.

Too |

S

Total energy = lim | x*(t)dt — could be an useful quantity.
S—
0

Energy spectrum is an useful concept
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X(t) = — j X (w)exp(iot)dw

X(w) = T X(t) exp(—lwt)dt

—Q0

x(t) and X(w) are said to form a Fourier transform pair




Parseval theorem

| |
é"—;8

t)exp(

X (f)exp(i2z ft)df

—127 ft t |df

dt




Type Il time functions

lim|x(t)| — oo

t—o0

No hope of any frequency
domain representations




Type IV

Define x; (t)=x(t) for 0<t<T &
=0fort>T

X (t)exp(—iwt)dt

>
—l
—_
S
~
[
é"—18

Xr (t) =g_ X (w)exp(iot)dw

)
lim ij\xT (f)[ df = Total power

T—>ooT

= h( f )df = contribution to the total power made

by the frequency components in the range ( f, f +df ).

=h(f)= lim —‘X ‘2 = power spectral density function.
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Type V: x(t) Is a stationary random process

Let X (t) be a zero mean stationary random process.
Samples of X (t) belong to Type IV time histories.
—> For each sample the power spectral

density function can be defined.

Definition:

Power spectral density funciton of X (t)

Sy ()= lim = <\x \2>

T—)ooT
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X (t)exp(—ia)t)dt_T“ X (t)exp(ia)t)dt>
(X (t) X (t,))exp|im(t, -t ) dtdt,
Rux (t, =t )exp io(t, —t, ) [dt;dt,

[T — ‘TU Ry (T)exp(ia)z')dr
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If we restrict our attention to only those Ry (7)
which satisfy the condition

TI!)TJOT NT‘RXX r)exp(iwr)dr —0,
we get the relations

ijx r)exp(iwr)dr

o0

I Syx (@)exp(—iwr)dw

—00

RXX (T) = z
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Remarks
(1) Ryx (T)

(2)Syx (a))

é'—;8 é'—oS é'-—-.S

O =y 8

(X ()X (t+7))=(X(t) X (t=7)) =Ryy (-7)

2

Ryx (7)exp(iowr)dz
Ry (7)(cosawz +isinwr)dr

Ry (Z')COS wrdr { Ryx (T) = Ryx (_T)}

Ryx (7)coswrdr
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Remarks

(3) Rxx — 5 _ _[ Sxx

= Area under the PSD function is the variance of the process.
(4)Syx (@)de = contribution to the total average power (variance)

made by frequency components in the range (@, +dw).
= Sy (@)=0

(5)Sxx (—@) = T Ry (7)exp(—iwr)dz  (Substitute s =-7)

—Q0

o0

= I Ryx (—s)exp(iws)ds

—00

o0

B j R (8)exp(is)ds =Sy ()

—0o0
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Remarks

o0

j Syx (w)exp(—iw7)dw

—00

(6) R (7) = -

o0

_1 I Sy (@)(coswr +isinwr)dw

27T

1@
=—|S d
ﬂ_([ « (w)coswrdw

(7) Physical PSD function (defined only for @ > 0)
Gy (@) =28y, (w) for =0

=0 for <0
Area under G, (@) would still be the variance of

the process.
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PSD Sxx (a))

has properties similar to a pdf

¢  mathematical
®  physical
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[Units of X (t)]°

Units of PSD:
frequency
Ex: X (t) is displacement
2 2
Units of PSD m or m
Hz  (rad/s)

Similarly, 1f X(t) is acceleration

2\ 2 2\ 2
Units of PSD: (m/s”) or (m/s”)

Hz (rad/s)




Remarks
(8) Wiener-Khinchine relations

Sy (@) =2 j Ry (7)c0swrdz
0

Ry (7) :% [Si (0)coswrde
0
—

o0

Gy (@)= 4j Ryx (7)cosmrdr
0

o0

R (7)== [ B (@)c0sordo

0
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A few examples of covariance and psd function pairs

o0

Py
—~
N
~
Il

27

—00

5(r)
exp( jBr)
1
Cos ft

exp(—a|r])
exp(—arz)

exp(—alr]|)cos Br

2exp(—0w2 )cos Jits

sinor

T

ij.s(a))exp(ja)r)da) S(a)):_if R(7)exp(—jor)da

1
208 (- )
27[5(&))
75 (w—B)+n5(w+ f)
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Typical psd function of wind velocity
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Typical psd function of waves

psd
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Typical psd function of earthquake ground acceleration
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Evolutionary random process
Consider a random process X (t) defined as

X(t)=V,(t) ifO<t<t,
&X(t) =V, (t) ift>t,.

Let V, (t) &V, (t) be zero mean, stationary random processes

2

with psd functions {S,y; (@)} .
= We can write

Syx (@,1) = Sw, () if O<t<ty
Syx (@,1) = Sw, (o) if t>1
This notion can be generalized to define nonstationary

random processes with time dependent psd functions.
Such processes are called as evolutionary random processes.
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