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Review of theory of
Random processes



3

     For example, if ( ) sin ,  cos sin .
For more complicated forms of guideway uneveness, ( ) would be more complicated.
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Parameter (time)

State

Ensemble

Notion of a random process

Working definition: 
A random variable 
that evolves in time.
Or
Parametered family of
random variables.
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Analogy

Random variable                             Statics
Random process                             Dynamics

When to model a quantity as random variable 
and when to model it as a random process?

This is analogous to asking when to model a 
system as static and when as dynamic.
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 
 

 

Random variable is a function from sample space
into real line such that 
(1) for every ,  : ( )  is an event,

(2) : ( ) 0

A random process is a function: 
and is denoted by ,  and is

x R X x
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 written as ( )  such that

( )for a fixed value of , , is a random variable,

(b) for a fixed value of , , is a function of time (a realization),

(c) for fixed values of  and , , is a number, an

X t

a t X t

X t

t X t
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 
d

(d) for varying t and , ,  is collection of time histories (ensemble).X t 
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Terminology

Evolution in time : Random processes 
Evolution in space: Random fields

Mathematically it is not necessary to maintain this distinction

Stochastic processes
Stochastic field
Random functions
Time series
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 
 

   

Let ,  be a random process.

=parameter; values taken by , =state.
For fixed value of 
If ,  is a discrete random variable, then ,  is a random pro

X t

t X t
t

X t X t





 

A scheme for classification of random processes

   

 

cess with a 
discrete state space.
If ,  is a continuous random variable, then ,  is a random process with a 
continuous state space.
If  takes only discrete values, we say that ,  is a random proc

X t X t

t X t

 



 

ess with 
discrete paramters.
If  takes continuous values, we say that ,  is a random process with 
continuous parameters.

t X t 
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(a) discrete state discrete parameter random processes
(b) discrete state continuous parameter random processes
(a) continuous state discrete parameter random processe

Four categories of random processes

s
(a) continuous state continuous parameter random processes
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Evolution of wind velocity in space and time

(a) Road roughness (evolution in space)
(b) wave heights (evolution in space and time)
(c) Thickness of a cylindrical shell (evolution in an angle)
(d) FRF-s evolution in frequency (and spa

Other examples

ce)

Parameter need not always be time…
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( ) :  ground displacement

( ) :  ground velocity

( ) :  ground acceleartion
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 ;XP x tRandom variable

State variable Parameter

Description of a random process

   
t
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
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;;

functiondensity y probabilitorder First 

    xtXPtxPX ;
Functionon Distributiy Probabilitorder First 
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    
1

th order Probability Distribution Function
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Complete description of a random process

 

  .~ of choiceany for  and  allfor  ~;~Specify 

OR

.~ of choiceany for  and  allfor  ~;~Specify 

~

~

tntxp

tntxP

X

X
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Expectation of a random process

Mean

Variance
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Autocovariance

Autocorrelation

Autocorrelation
coefficient
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       
   
 

1 2 1 2 1 2

2
X

1 2

Remarks
(a) , ,  if 0

(b) ,

(c)  , 1 (prove it)
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Let ( ) be a random process and consider its 1st and 2nd order pdf-s.
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Continuing further, consider  time instants  and 

associated random variables .

Let the jpdf of  be given by

, , , ; , , ,

1 1exp ; 1,
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Stationarity of a random process

Analogous to concept of steady state in vibration problems

One or more of the properties of random process becomes
independent of time

Strong sense stationarity (SSS)
: defined with respect to pdf-s

Wide sense stationarity (WSS)
: defined with respect to moments
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1st order, 2nd order, n-th order SSS
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What happen to mean and variance of a 1st order SSS process?

Remark (a)
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Exercise

Show that 2nd order SSS implies 1st order SSS

Remark (b)
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What happens to covariance of a 2nd order SSS process?

Remark (c)
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Remark (d)
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Remarks (Continued)
(e) The default notion of stationarity is 2nd order WSS.
(f) For a process that is evolving in space the term homogeneity
is used to denote stationarity.
(g) A process that is not stationary is called nonstationary.
(h) Notion of joint stationarity of two or more random processes
can also be defined.
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Wind velocity:
Stationary in time 
Nonstationary in space
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time

Acceleration

Earthquake ground acceleration
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Ergodicty of a random process

Basic notion
Equivalence of temporal and ensemble averages

Direction
Ensemble

Direction
 Temporal
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Ergodicity in mean

   

  2
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Let X(t) be a stationary random process with specified joint pdf structure


