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Discussion on properties of processes with
Independent increments



Problem 35
Let X (t) be a process with stationary independent increments;

assumet>0& X (O) — 0. Show that

eVar|
e\/ar :X (t)— X (S)] = o° (t —S)
eCov| X (t) X (s) |=c?min(t,s)

(t=1)) = 4 &o? = variance of X (t =1).

Note: clearly, (X



< (S) X (0))
=

X (t+5)- X(s >+<X(s)—X(O)>
=(X (t)= X (0))+(X (s)— X (0)) - stationary increments
=f(t)+ f(s)
We get the functional equation f (t+s) = f (t) + f(S)

= f (t)=ct is the solution.
Given f (1)=(X (1))=u=c=p

(X (t))=ut




- stationary increments

:>g(t+s) g(t)+g(j_)
= g(t)=ct_=
g(1)=Var| X(1)|=c*=c=0"

= Var| X (t) |= azt//







Var| X (t)-X(s)]




COV[ X (t), X (s)]=

S varx (- (o)) var x ()] var[ X (5)]

2

:%{HS (t-s)] Z%

= COV[ X (t),X (s)]=c’ min(t,s) //

(assuming that t > s)




Problem 34
Let X (t) be a stationary Gaussian random process with
zero mean and PSD function of the form

2 2
Sy (@)= ;Xz exp{-za;z}-oo<a)<oo//

eDetermine the autocorrelation and cross correlation

functions of the processes X (t) and X (t)

eFind the average rate of upcrossing of level g

eFind the PDF of time for first crossing of level S

eFind the average rate of peaks above level S

eFind the expected fractional occupation time above
level 5 over a duration 0 to T/

eFind the PDF of extreme of X (t) over duration0to T




Spectral moments

Sy (a)):

2
Oy

27T




Autocorrelation function

2

Sxx(a)):\/%xmexp ;-oo<a)<oo//

1

exp(ia)f)da)
















(r)= o2 exp(— “;Tz ](_azf) (36562 )>

- Ry (7)=—o0ya’ exp(— 4 (1—0(272)




process
derivative
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Level crossing statistics

N (,B,O,T):‘THX (t)| 5] X (t)- B ]dt

/

Average rate of upcrossing of level S
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PDF of time for first crossing of level S

For high levels of crossings we can approximate

the number of times the level Is crossed as a Poisson
random variable.

P[N(B,0,T)=k |=exp[-AT

f(l\;

A=n(p,t)=—exp

T

T, = First passage time

p[Tf >T: = P[No points in O to T]= P[N(ﬁ,O,T):O]

P. (t)=1—gg[—ﬂ]=l—exp T>0




Average rate of peaks above level S
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Expected fractional occupation time above level S
over adurationOto T

(,BT) 1 (t)- dt//




PDF of extreme of X (t) over durationOto T
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FACTORS OF SAFETY
&
PROBABILITY OF FAILURE



Problem 35

In traditional engineering practice, uncertainties in

specifying loads and structural resistance are accounted

for by overestimating the loads and underestimating the
strucutral resistance. The factors by which these estimates

are obtained are calibrated against past experience with
existing stock of strucutres. It is of interest to relate this broad
principle with the probabilistic modeling of uncertainties.

To illustrate this let us consider ah idealized situation in which

demands on the structure and supply of structural capacity
are modeled as a pair of mutually independent Gaussian
random variables.

25



The failure event is defined by exceedance of load effect over the
available capacity. If the tolerable level of probability of failure

IS specified to be P, determine the factors by which the expected
load and capacity are to be mutiplied.

Extend the discussion to the case when several loads act
on the structure (like, for example, dead load, live load,
thermal loads, etc.)
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R— N(uz,07); S—> N(u,0.); RLS
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Capacity _
reduction ¢ — 1 — gﬁﬁR
factor
Load factor _
y =1+ &b

DLy = Yls

1- 20 (1= P )5 g =| 1+ 607 (1= P ) 5 | g

\/\/\// 7




Nominal factor of safety

Ry Mg (1_ R5R) _(1+ PO )(1_ KR§R)
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Case of multiple loads

(Ref: A Haldar and S Mahadevan, 2000, Probability,
reliability, and statistical methods in engineering design,
John Wiley, NY)

eStructures need to be designed for more than
one loads

eIt is unlikely that all the loads would act
simultaneously
L. oad combination needs to be considered
Dead load + live load
Dead load + live load + wind
Dead load + live load + earthquake
eDead load + wind, etc.




S=>»S; S, > N(g,0) i=12--,n

1=1

=S = N(us,0%)

Use formulation already developed.
This leads to a single load factor for S.

Not very useful.
We need different load factors y; for i=1,2,..,n.




Hr =
2 2
et gz\/GR+GS//
O +Og
— Hr = Hs EIB(GR Os

2
= L +g,6’(O'R Jr\/aSl +0

2 2
82 _I_"'_l_o-sn

)




2 2 2
\/O-Sl +O_SZ +°“+Gsn

nn

Let ¢

GSl +GSZ +"'+Gsn

:ILIR :lLlS +gﬂ|:GR +gnn(081 +O_SZ +"'+Gsn):|

= HR = Hs + Hs, T+ U

+gﬂ[GR —I_gnn (681 —I_GSZ +"°+Gsn ):|

= (1- 8,35&). Hr = Hs, (1+ EPEmOs, ) + s, (1+ &€ 0s, ) Foe

—

+Us (1+ gﬂgnné'sn )
= ¢ =(1-¢85;) & 7 =1+Be,Ss

Knowing P; and variability measures
we can find the load and Resistance factors.




Generalization:
Methods of structural reliability analysis



Problem 36

Figure (next slide) shows the pseudo-acceleration spectra
for a rocky site according to the IS 1893 (Part 1) : 2002
document. The PGA is taken to be 0.24q. It is of interest
to develop a random process model for the ground
acceleration that Is compatible with this response spectrum.

It may be assumed that the ground acceleration can be
modeled as a zero mean, stationary Gaussian random
process. The duration of the acceleration can be taken
to be 30s and the given response spectra may be
Interpreted as locus of the 84% percentile point and
damping may be taken to be 5%.
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Pseudo-acceleration spectra as per
IS 1893-2002
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How to generate a response spectrum compatible with a given PSD?

X+ 217, 0, X+ @ X = —Xq

X, (t) = Zero mean, stationary, Gaussian random process;
Xy (1)~ N [O’ Sg (a))}
% = (1)

Py, () =exp| =" ()T |
v(a)= 2; eXp(_ 20:2)

with o7 = [[H (@) Sy (0)o&

ol = T |H (a))|2 a)zSggJ (w)dw




For a given probability p, the corresponding « is given by

P =exp| - Ox exp| — o’ T
2ro, 207

X

1
112
:a:{—ZaXZ In{— 270 In(p) }

o, T

Let R(a)n ,nn) be the given pseudo-acceleration response spectrum.

We interpret R(w,,7, ) as the p - th percentile point.

270

o, T

1
2
= R(w,,n,)=o; {—203 In {— “In ( p)}} (typically p=84%)




How to generate a PSD compatible with a given

response spectrum?

X+ 21 @ X+ X = —X,

X, (t) = zero mean, stationary, Gaussian random process;

X, (1)~ N [O’ Sg (a))}

To a first approximation we assume

o2 = [H(0)f 5, (0o

(277,00, )




-

= R*(@,,1,) = @ 12—

\

S ()

217, @,

R (@,.77,)

Sgg (a)n): . -

. < —In| -

n

1

(p)

@, T

- w, T

To a first approximation we thus get




Steps
(1) Set iteration N=1
(2) Start with the initial guess on the PSD given by

) B o)
I In(p)

@, T

(3)Evaluate o7 and o using




-

(4)Evaluate R" (@y,77,) = >3 -207In

\

270,

o, 1

(5)Obtain an improved estimate of PSD using

2

R)
R (o)

SN+1(0)):SN(0))

In(p)

(6)Stop iterations if the PSD function has converged,;

If not go to step 3.

N |~
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Problem 37
Figure (next slide) shows the psd function of ground
acceleration which is modeled using Kanai-Tajimi's

approach (with e, =15rads, 77, = 0.6).

Determine the pseudo-acceleration spectra compatible

with this psd function. It may be assumed that the ground
acceleration i1s a zero mean, stationary Gaussian random
process. The duration of the acceleration can be taken to be
30s and the target response spectra may be interpreted as the
locus of the 84% percentile point and damping may be
taken to be 5%.
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Kanai-Tajimi PSD function
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Discussion on outcrossing theory of random
Processes and applications to problems of
_oad combination




Problem 38 : Load combination
elet Q(t) be a quasi-static load on a structure

(e.g., sustained live load). If we are interested in designing
the structure for this load, we can estimate

Q= mtaxQ(t) and use that is the design.

e\\What happens if more than one loads act simultaneously?

Q(t)=Qu(t)+Q, (1)

max Q(t)= max Q(t)+Q,(t) | max Q, (t)+ max Q, (t)
- Maximum of Q, (t) &Q, (t) do not reach simultaneously.

Consider the failure event of Q(t) crossing a critical barrier £ (t)
and let N, (T ) = number of times the level £(t) is crossed
during the interval 0 to T. Show that if Q, (t) and Q, (t) are independent,

P. <P + E[Ng (T)] Obtain an expression for E[Né (T)]




p. = P[Failure att=0u Ng(T)Zl:
= D[Failure att=0]+ P[Ng(T)Zl:

P| Failure att =0 N, (T)>1]
D +P[N§(T)>1:|

_P+ZP //
<F>+§SHP[ (T)—”}/

=P +E|

— P <




Recall that in order to characterize the average rate
of crossing of a critical barrier by a random process,
we need the jpdf of the process and its derivative

at the same time Instant.

Consider

Q(t) = Qu(t)+Qx(t)

Q(t)=Q (t)+ Q. (t)

U=0Q,(t)

V =0Q,(t)

Poguy (8, U,V) = Pygo.0 (A—U,G -V, U,v)

- leQl (q—U,q—V) pQZQ (U,V)

—00 —00




RECALL

|

4
ik

Y(t)=U|X(t)-«a]
g 1

7L Y ()=X(1)s[ X (t)-«]

Y (1) =[X (1) 5] X (t)-«]

>+

N(T) = hx (t)| S X (t) e Jat
—on,




N. (T ) = number of times the level £(t) is crossed in [0,T |
with positive slope

Y(t)=U|Q(t)-£(t)

Y (t) [Q( ]5[(}

. . o
s(t)]o

t)—&(t)]
t)-£(t)]u]Q (t)—f(t)]

[Q(t)-¢()]U[Q()-&(t) Jat
vg(o,t)zE{[Q(t ~¢()]s[Q(t)-&(1)]u [Q(t)—g(t)]}

(t)
()] (
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Remark
The evaluation of

v: (1)

- [ [a- £ ] ] pu (0-00-) (00}t
&(t)

—00 —00

IS possible for Gaussian models for loads. A general solution
Is difficult to obtain.




Problem 39
Discussion of fatigue crack growth modeling under
random loads using fracture mechanics concepts



Fracture mechanics based approaches

Basic assumption:
there exists a crack in the structural component.

Question:
Given the geometry of the crack, loads, boundary conditions,
can we say if the crack is likely to grow?

Parameters for measuring the potency of the crack

*Stress intensity factor //
*Energy release rate

«J-integral

*Crack tip opening displacement




Stress near the cracktip in

an infinite plate M
=

Mode | (plane strain)
Oy = ONZE 052 [1—sin Qsin %}
27r 2 2 2
Oy = OV osY {1+sm95|n%
27r 2 2 2
N 2
K
GI = i 9 _|_...
= (0)

_ovra ( ' ]cosg 1—2v+sin2g}
u \\2z) 2| 2
AT ( ' jsing 2-2v+cos??
v 2z )7 2| 2
=0




Stress Intensity Factor (SIF) and Critical SIF
In the expressions for stress and displacement components

the quantities o and «/za appear together.
Can we give a hame to the quantitiy ov/7za?

Recall: EI, mv, 0.5mv®, & = x —ct,---Reynold's number,
Froude's number---

Definition

K, =limy2zro,,(r,6 =0)

r—0

K, = Mode I stress intensity factor =o+/ za.

Definition

Analogy
Stress  Yield stress
SIF  Critical SIF

Crack propagates if K, > K.
K,. = critical stress intensity factor

Critical SIF is a material property.



Mode | (plane strain)
K, 6[ . 0 . 36’}
Oy = cos—| 1—-sin—sin—
27y 2 2

K, 9[ . 0 . 36’}
0, =—=——=—=C0S—|1+SIn—SIn—
27rY 2 2

1—2v+sin2€}
2

2 — 2v + c0oS? g}
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Model for Stage II crack growth

da _ f[AK,K
dN

Knins AKy E v, 0

max '’ "' *min’?

ys’ault’gi’ki]

& = environmental variables
(temperature, humidity, salinity, etc.,)
ki = other material or mechanics variables
(frequency of excitation, grain size, ...)

Dimensional analysis

da —(&jZF R ch AKth GyS

dN | E 'AK' AK ' E ' E




Paris - Erdogan model

=C(AK)";AK >0;a(0) = a,

—jzlogCerlogAK

dN
Example(a Inm & AK In I\/Ipa\/ﬁ)

Ferrite pearlite steel : da =6.80x107* (AK

dN

)3.00




Modeling of uncertainties
Sources

e Macro-properties of specimens
(geometry, dimensions, and
material properties may differ
between specimens).

e External loading.

e Inhomgenous microstructure.

Tests on identical specimens

e Behavior of crack length of identical specimens is random
e The crack length behavior is nonlinear in time

e The curves of different specimens intermingle.




Two approaches
e Treat constants appearing in the differential equation
for evolution of a as a fucntion of N as random variables.

S—S:C(AK)m;AK >0;a(0)=a,

e Introduce random process models

8 c(aK)" X (1):4K > 0;a(0) =2y
At

* N =—
27




Cumulative jump models

(Reference: K Sobczyk and B F Spencer Jr., 1992,
Random fatigue from data to theory, Academic Press)

Define A(t, ) = random process: length of the dominant

crack at time t.
oy c Q) (sample point). To be suppressed in further description.

N(t)
A=A+ Y Yi=AA

o A, = Initial crack length; sufficiently long to propagate;

could be random.
o N (t)= a counting process; homogeneous Poisson process;
counts the number of crack increments in O to t.




[N (1) =K] ~xp (o) L k01,2,

o{Y,} " =iid sequence of non-negative rvs with a

common pdf p, (y)/

o0

oN(t) L{Y;}
*P| A(t)<a]=P,(ajt) [PDF]

dP, (a;
*Pa(ait)= Ad(a Y oo



Let A(t)=A, + A (t) with A (t) ZY

Consider the moment generating function of A (t).
N(t)

<exp(sﬂ)><exp(S;Yi p

N(t):k PN




Here G( ) IS the moment generating function of Y,.

—_—

That is, G(s) = (exp(-sY))
Let us assume p, (y)=aexp(—ay);y=0

= G(s)= ¢ _s>0
- a+s
\ 2, (adqt)
= Py (&1) =exp(—Aot - aaz %kH
=0

k+1 k




P, (&t) =exp(—A,t —a i (24!)

} \/(aﬂot)

a>0

kI( k+1)

exp(—Aot —aa) (2\/10aat) a>0
where I, (-) = Bessel's function of the first order.

A(t)=A+A(t)= pa(ait)= py (3= A t)




Model for life time
Let £ be the critical crack length
(esimtated from the knowledge of K. ).

T =time required for A(t) to reach the critical length £.
P(T>t)=P[A(t)<¢&]

=
exp(—Aot —ar{a—Ay}) |1(2\//10a<a— A0>t)da

lt can be shown that / J
BT (t):ﬂoexp(—ﬂot—a{a—,&b}) IO[Z\/ﬂOa<a— A0>tJ;O<t < 0




Estimation of system parameters

Model parameters: 4, associated with the process N (t);

a :associated with p, ().

|dea: derive these model parameters from laws such as
the Paris law. An approximate method to achieve this
would be to modify the Paris law to allow for randomness
In applied stress and system parameters.

da

d—l\';’:C(AK)m;ap(O):aO




Let S(t) be the stress field that is modeled as
a Gaussian, stationary random process.

eWhat is meant by cycle?

Nt 4 _ddt_1d

dN  dtdN @, dt

:di—wC[(Smax—Sm,n)r}m;ap (0)=2a,

dt
Interpret o, as the average rate of peaks in S(t).




o, = average rate of zero crossing of S(t).

eInterpretation of AK
Recall: AK = Ao/ 7a. Interpret Ao = (S, — Smin ) = Mean range.

Sur = {Sax — Sin) = 25, J—l 1=et),/
g:[l— Agj A J”S dw/

<Smax B Smin> ’ap (0) = d




eInterpretation of A,

I we take N (t)=number of peaks above a level s,,
then A, becomes the average rate of peaks in S(t)
above level s,. Select s, = fatigue limit of material

(that 1s the endurance limit).
1 - —

p
So/\; )

\JA4‘A§)

1 (A, )2, A,
%:Zﬂ{(Azj 1 ®£SO\/A4A§]/

+\/(27zA2)¢(so)CD




How to find «?
Select « such that

IS minimized.

Here t” =time required by A (t) to reach &,




