Stochastic Structural Dynamics

Lecture-38

Problem solving session-2

Dr C S Manohar
Department of Civil Engineering
Professor of Structural Engineering
Indian Institute of Science
Bangalore 560 012 India

manohar@civil.iisc.ernet.in

Consider the vector random variable Y given by $Y = \{Y_1 \mid Y_2 \mid Y_3\}^t$. It is given that Y is normal with

mean vector μ and correlation matrix R given by

$$\mu = \begin{cases} 1 \\ 2 \\ 3 \end{cases} \text{ and } R = \langle YY^t \rangle = \begin{bmatrix} 4 & -1 & 6 \\ -1 & 9 & 0 \\ 6 & 0 & 19 \end{bmatrix}.$$

We now form the random process

$$X(t) = Y_1 + Y_2t + Y_3t^2.$$

Find the mean, autocorrelations and cross correlations of X(t) and $\dot{X}(t)$.

Define
$$N(t) = \begin{bmatrix} 1 & t & t^2 \end{bmatrix}^t \Rightarrow X(t) = N^t(t)Y$$

$$\langle X(t) \rangle = N^t(t) \langle Y \rangle = \begin{bmatrix} 1 & t & t^2 \end{bmatrix} \begin{cases} 1 \\ 2 \\ 3 \end{cases} = 1 + 2t + 3t^2$$

$$\langle \dot{X}(t) \rangle = \langle B + 2Ct \rangle = 2 + 6t$$

$$\langle X(t_1) X^t(t_2) \rangle = N^t(t_1) \langle YY^t \rangle N(t_2)$$

$$= \begin{bmatrix} 1 & t_1 & t_1^2 \end{bmatrix}^t \begin{bmatrix} 4 & -1 & 6 \\ -1 & 9 & 0 \\ 6 & 0 & 19 \end{bmatrix} \begin{cases} 1 \\ t_2 \\ t_2^2 \end{cases} = \begin{bmatrix} 1 & t_1 & t_1^2 \end{bmatrix}^t \begin{cases} 4 - t_2 + 6t_2^2 \\ -1 + 9t_2 \\ 6 + 19t_2^2 \end{cases}$$

$$R_{XX}(t_1, t_2) = 4 - t_1 - t_2 + 9t_1t_2 + 6t_1^2 + 6t_2^2 + 19t_1^2t_2^2$$

$$\langle X^2(t) \rangle = 4 - 2t + 21t^2 + 19t^4$$

$$\langle X(t) \rangle = 1 + 2t + 3t^{2}$$

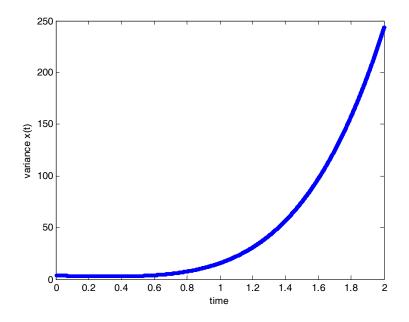
$$R_{XX}(t_{1}, t_{2}) = 4 - t_{1} - t_{2} + 9t_{1}t_{2} + 6t_{1}^{2} + 6t_{2}^{2} + 19t_{1}^{2}t_{2}^{2}$$

$$\langle X^{2}(t) \rangle = 4 - 2t + 21t^{2} + 19t^{4}$$

$$\sigma_{X}^{2}(t) = 4 - 2t + 21t^{2} + 19t^{4} - (1 + 2t + 3t^{2})^{2}$$

$$= 4 - 2t + 21t^{2} + 19t^{4} - (1 + 4t^{2} + 9t^{4} + 4t + 6t^{2} + 12t^{3})$$

$$= 4 - 6t + 11t^{2} - 12t^{3} + 19t^{4}$$



$$R_{XX}(t_{1},t_{2}) = 4 - t_{1} - t_{2} + 9t_{1}t_{2} + 6t_{1}^{2} + 6t_{2}^{2} + 19t_{1}^{2}t_{2}^{2}$$

$$\left\langle X(t_{1})\dot{X}(t_{2})\right\rangle = \frac{\partial}{\partial t_{2}}R_{XX}(t_{1},t_{2}) = -1 + 9t_{1} + 12t_{2} + 38t_{1}^{2}t_{2}$$
Check
$$\left\langle X(t_{1})\dot{X}(t_{2})\right\rangle = \left\langle \left(Y_{1} + Y_{2}t_{1} + Y_{3}t_{1}^{2}\right)\left(Y_{2} + 2Y_{3}t_{2}\right)\right\rangle$$

$$= -1 + 12t_{2} + 9t_{1} + 38t_{1}^{2}t_{2} \quad (ok)$$

$$\left\langle \dot{X}(t_{1})\dot{X}(t_{2})\right\rangle = \frac{\partial^{2}}{\partial t_{1}\partial t_{2}}R_{XX}(t_{1},t_{2}) = 9 + 76t_{1}t_{2}$$

Consider the random process $X(t) = a \exp[j(\Omega t - \Theta)]$

where $a = \text{deterministic constant}, j = \sqrt{-1}$,

 Ω = is a random variable with pdf $p_{\Omega}(\omega)$ and

characteristic function $\Phi_{\Omega}(\lambda)$, and

 Θ =a random variable that is independent of Ω and distributed uniformly in $(-\pi,\pi)$. Show that

- $\bullet R_{XX}(\tau)$ is proportional to $\Phi_{\Omega}(\lambda)$, and
- $ullet S_{XX}\left(\omega\right)$ is proportional to $p_{\Omega}\left(\omega\right)$

$$X(t) = a \exp \left[j(\Omega t - \Theta) \right]$$

$$\langle a \exp \left(j\Omega t - \Theta \right) \rangle = a \langle \exp \left(j\Omega t \right) \rangle \langle \exp \left(-j\Theta \right) \rangle = 0$$

$$\langle X(t)X^*(t - \lambda) \rangle$$

$$= a^2 \langle \exp \left[j(\Omega t - \Theta) \right] \exp \left[-j(\Omega t - \Omega \lambda - \Theta) \right] \rangle$$

$$= a^2 \langle \exp \left[j\Omega \lambda \right] \rangle$$

$$\Rightarrow R_{XX}(\lambda) = a^2 \Phi_{\Omega}(\lambda)$$

$$S_{XX}(\omega) = \int_{-\infty}^{\infty} a^2 \Phi_{\Omega}(\lambda) \exp(-j\omega \lambda) d\lambda = a^2 p_{\Omega}(\omega)$$

Problem 19: A random process Y(t) is given by

$$Y(t) = X(t) + 2X(t-\tau) + X(t-2\tau)$$

where X(t) is a zero mean stationary random process with PSD function

$$S_{XX}(\omega) = \frac{C}{\omega^2 + \alpha^2}$$

Determine the PSD function of Y(t).

$$Y(t) = X(t) + 2X(t - \lambda) + X(t - 2\lambda)$$

$$\Rightarrow \langle Y(t) \rangle = \langle X(t) + 2X(t - \tau) + X(t - 2\tau) \rangle = 0$$

$$Y(t + \tau) = X(t + \tau) + 2X(t - \lambda + \tau) + X(t - 2\lambda + \tau)$$

$$\langle Y(t)Y(t + \tau) \rangle = R_{XX}(\tau) + 2R_{XX}(-\lambda + \tau) + R_{XX}(-2\lambda + \tau)$$

$$+2R_{XX}(\tau + \lambda) + 4R_{XX}(\tau) + 2R_{XX}(-\lambda + \tau)$$

$$+R_{XX}(\tau + 2\lambda) + 2R_{XX}(\lambda + \tau) + R_{XX}(\tau)$$

$$R_{YY}(\tau) = 6R_{XX}(\tau) + 4R_{XX}(\tau - \lambda) + 4R_{XX}(\tau + \lambda)$$

$$+R_{XX}(\tau - 2\lambda) + R_{XX}(\tau + 2\lambda)$$

$$S(\omega) = \int_{-\infty}^{\infty} R(\tau) \exp(-i\omega\tau) d\tau$$

$$Consider \int_{-\infty}^{\infty} R(\tau + a) \exp(-i\omega\tau) d\tau$$

$$= \int_{-\infty}^{\infty} R(u) \exp(-i\omega(u - a)) d\tau$$

$$= \exp(i\omega a) \int_{-\infty}^{\infty} R(u) \exp(-i\omega u) d\tau = \exp(i\omega a) S_{UU}(\omega)$$

$$\int_{-\infty}^{\infty} R(\tau) \exp(-i\omega\tau) d\tau = S(\omega)$$

$$\int_{-\infty}^{\infty} R(\tau + a) \exp(-i\omega\tau) d\tau = \exp(i\omega a) S_{UU}(\omega)$$

$$R_{YY}(\tau) = 6R_{XX}(\tau) + 4R_{XX}(\tau - \lambda) + 4R_{XX}(\tau + \lambda)$$

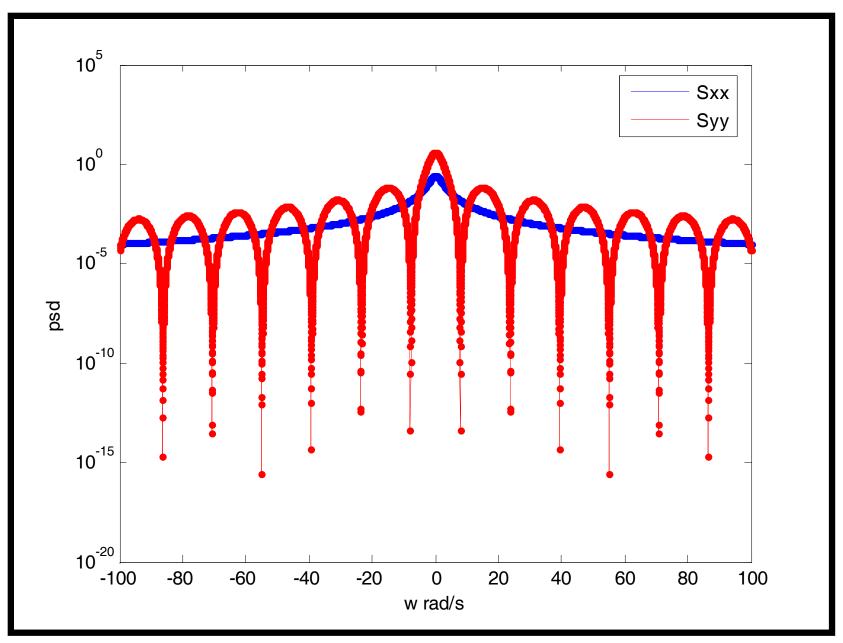
$$+R_{XX}(\tau - 2\lambda) + R_{XX}(\tau + 2\lambda)$$

$$\Rightarrow S_{YY}(\omega) = 6S_{XX}(\omega) + 4S_{XX}(\omega) \left[\exp(i\omega\lambda) + \exp(-i\omega\lambda) \right]$$

$$+S_{XX}(\omega) \left[\exp(2i\omega\lambda) + \exp(-2i\omega\lambda) \right]$$

$$= S_{XX}(\omega) \left[6 + 8\cos(\omega\lambda) + 2\cos(2\omega\lambda) \right]$$

$$S_{YY}(\omega) = \frac{C}{\omega^2 + \alpha^2} \left[6 + 8\cos(\omega\lambda) + 2\cos(2\omega\lambda) \right]$$



Consider two independent random processes X(t) and Y(t) which have zero mean and are stationary. Define $Z(t) = X(t)Y(t-\lambda)$ where λ is a deterministic constant. Determine PSD function of Z(t).

$$Z(t) = X(t)Y(t-\lambda)$$

$$\Rightarrow \langle Z(t) \rangle = \langle X(t)Y(t-\lambda) \rangle = \langle X(t) \rangle \langle Y(t-\lambda) \rangle = 0$$

$$\langle Z(t)Z(t+\tau) \rangle = \langle X(t)Y(t-\lambda)X(t+\tau)Y(t-\lambda+\tau) \rangle$$

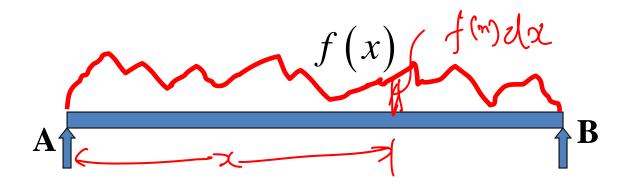
$$= \langle X(t)X(t+\tau)Y(t-\lambda+\tau) \rangle \langle Y(t-\lambda)Y(t-\lambda+\tau) \rangle$$

$$R_{ZZ}(\tau) = R_{XX}(\tau)R_{YY}(\tau)$$

$$\Rightarrow S_{ZZ}(\omega) = \int_{-\infty}^{\infty} S_{XX}(\varsigma)S_{YY}(\varsigma-\omega)d\varsigma$$

A simply supported beam of span L carries a distributed load f(x). The load is modeled as a segment of stationary random process as $f(x) = F_0 \left[1 + \varepsilon \xi(x) \right]$ such that $\langle \xi(x) \rangle = 0$ and $\langle \xi(x) \xi(x+\tau) \rangle = \delta(\tau)$. Determine the following

- Bending moment at midspan
- •Joint pdf of reactions at the two supports.



$$R_{B}L = \int_{0}^{L} xf(x)dx$$

$$R_{B} = \frac{1}{L} \int_{0}^{L} xf(x)dx = \frac{1}{L} \int_{0}^{L} xF_{0} \left[1 + \varepsilon \xi(x)\right] dx$$

$$= \frac{F_{0}L}{2} + \frac{F_{0}\varepsilon}{L} \int_{0}^{L} x\xi(x) dx //$$

$$\Rightarrow \langle R_{B} \rangle = \left\langle \frac{F_{0}L}{2} \right\rangle + \frac{F_{0}\varepsilon}{L} \int_{0}^{L} x \langle \xi(x) \rangle dx = \frac{F_{0}L}{2}$$

$$\left(R_{B} - \frac{F_{0}L}{2}\right) = \frac{F_{0}\varepsilon}{L} \int_{0}^{L} x\xi(x) dx$$

$$\left(\left(R_{B} - \frac{F_{0}L}{2}\right)^{2}\right) = \left(\frac{F_{0}\varepsilon}{L}\right)^{2} \int_{0}^{L} \int_{0}^{L} x_{1}x_{2} \left\langle \xi(x_{1})\xi(x_{2})\right\rangle dx_{1} dx_{2}$$

$$= \left(\frac{F_{0}\varepsilon}{L}\right)^{2} \int_{0}^{L} \int_{0}^{L} x_{1}x_{2}I_{0}\delta(x_{1} - x_{2}) dx_{1} dx_{2}$$

$$= \left(\frac{F_{0}\varepsilon}{L}\right)^{2} \int_{0}^{L} x^{2}I_{0} dx = \frac{F_{0}^{2}\varepsilon^{2}LI_{0}}{3}$$

$$R_{B} \sim N \left[\frac{F_{0}L}{2} \sqrt{\frac{F_{0}^{2}\varepsilon^{2}LI_{0}}{3}}\right]$$

$$\left\langle \left(R_{A} - \frac{F_{0}L}{2} \right) \left(R_{B} - \frac{F_{0}L}{2} \right) \right\rangle \\
= \frac{F_{0}^{2} \varepsilon^{2}}{L^{2}} \int_{0}^{L} \int_{0}^{L} (L - x_{1}) x_{2} \left\langle \xi(x_{1}) \xi(x_{2}) \right\rangle dx_{1} dx_{2} \\
= \frac{F_{0}^{2} \varepsilon^{2}}{L^{2}} \int_{0}^{L} \int_{0}^{L} (L - x_{1}) x_{2} I_{0} \delta(x_{2} - x_{1}) dx_{1} dx_{2} \\
= \frac{F_{0}^{2} \varepsilon^{2}}{L^{2}} I_{0} \int_{0}^{L} x(L - x) dx = \frac{F_{0}^{2} \varepsilon^{2} I_{0}L}{6} \right/ \left(\frac{F_{0}^{2} \varepsilon^{2} L I_{0}}{3} - \frac{F_{0}^{2} \varepsilon^{2} L I_{0}}{6} \right) \\
\left(\frac{F_{0}L}{2} \right) \left(\frac{F_{0}\varepsilon^{2} L I_{0}}{6} - \frac{F_{0}\varepsilon^{2} \varepsilon^{2} L I_{0}}{3} \right) \right]$$

Similarly one can study

$$M\left(\frac{L}{2}\right) = M_0 = \frac{R_A L}{2} - \int_0^{\frac{L}{2}} \left(\frac{L}{2} - x\right) f(x) dx$$

$$M\left(\frac{L}{2}\right) = M_0 = \frac{R_A L}{2} - \int_0^{\frac{L}{2}} \left(\frac{L}{2} - x\right) f(x) dx$$

$$M_0 = \frac{L}{2} \frac{1}{L} \int_0^L (L - x) f(x) dx - \int_0^{\frac{L}{2}} \left(\frac{L}{2} - x\right) f(x) dx$$

$$= \frac{1}{2} \int_{0}^{L} (L-x) F_{0} \left[1 + \varepsilon \xi(x)\right] dx - \int_{0}^{\frac{L}{2}} \left(\frac{L}{2} - x\right) f(x) dx$$
Exercise: complete the characterization of M_{0}

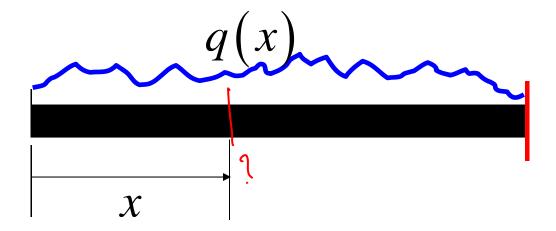
A cantilever beam carries a randomly distributed load as shown below. The load q(x) is modeled as

$$q(x) = q_0 [1 + \varepsilon f(x)]; \langle f(x) \rangle = 0 \&$$

$$q(x) = q_0 \left[1 + \varepsilon f(x) \right]; \langle f(x) \rangle = 0 \&$$

$$\langle f(x_1) f(x_2) \rangle = \frac{1}{2\pi} \exp \left[-\frac{1}{2} \left(x_1^2 + x_2^2 \right) \right]$$

Determine the bending moment at a section *x* measured from the free end.



$$M(x) = \int_{0}^{x} (x - \xi)q(\xi)d\xi$$

$$= \int_{0}^{x} (x - \xi)q_{0}\left[1 + \varepsilon f(\xi)\right]d\xi$$

$$\langle M(x)\rangle = \int_{0}^{x} (x - \xi)q_{0}d\xi = q_{0}\left[x^{2} - \frac{x^{2}}{2}\right] = \left(q_{0}\frac{x^{2}}{2}\right)$$

$$\left\langle \left[M(x) - q_{0}\frac{x^{2}}{2}\right]^{2}\right\rangle = \left(q_{0}^{2}\varepsilon^{2}\int_{0}^{x}\int_{0}^{x} (x - \xi_{1})(x - \xi_{2})\langle f(\xi_{1})f(\xi_{2})\rangle d\xi_{1}d\xi_{2}\rangle\right)$$

$$= q_{0}^{2}\varepsilon^{2}\int_{0}^{x}\int_{0}^{x} (x - \xi_{1})(x - \xi_{2})\frac{1}{2\pi}\exp\left[-\frac{1}{2}(\xi_{1}^{2} + \xi_{2}^{2})\right]d\xi_{1}d\xi_{2}$$

$$\sigma_{M}^{2}(x) = q_{0}^{2} \varepsilon^{2} \int_{0}^{x} \int_{0}^{x} (x - \xi_{1})(x - \xi_{2}) \frac{1}{2\pi} \exp\left[-\frac{1}{2}(\xi_{1}^{2} + \xi_{2}^{2})\right] d\xi_{1} d\xi_{2}$$

$$= q_{0}^{2} \varepsilon^{2} x^{2} \int_{0}^{x} \int_{0}^{x} \frac{1}{2\pi} \exp\left[-\frac{1}{2}(\xi_{1}^{2} + \xi_{2}^{2})\right] d\xi_{1} d\xi_{2}$$

$$-q_{0}^{2} \varepsilon^{2} x \int_{0}^{x} \int_{0}^{x} \xi_{2} \frac{1}{2\pi} \exp\left[-\frac{1}{2}(\xi_{1}^{2} + \xi_{2}^{2})\right] d\xi_{1} d\xi_{2}$$

$$-q_{0}^{2} \varepsilon^{2} x \int_{0}^{x} \int_{0}^{x} \xi_{1} \frac{1}{2\pi} \exp\left[-\frac{1}{2}(\xi_{1}^{2} + \xi_{2}^{2})\right] d\xi_{1} d\xi_{2}$$

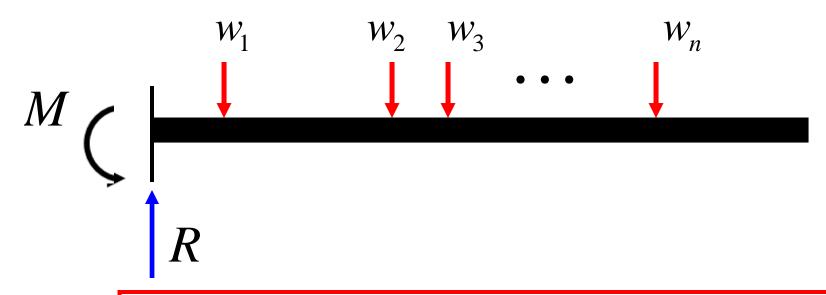
$$+q_{0}^{2} \varepsilon^{2} \int_{0}^{x} \int_{0}^{x} \xi_{1} \xi_{2} \frac{1}{2\pi} \exp\left[-\frac{1}{2}(\xi_{1}^{2} + \xi_{2}^{2})\right] d\xi_{1} d\xi_{2}$$

$$\sigma_M^2(x) = q_0^2 \varepsilon^2 x^2 \Psi^2(x) - 2x q_0^2 \varepsilon^2 \frac{\Psi(x)}{\sqrt{2\pi}} \left[1 - \exp\left(-\frac{x^2}{2}\right) \right]$$

$$+\frac{q_0^2\varepsilon^2}{2\pi} \left[1 - \exp\left(-\frac{x^2}{2}\right)\right]^2$$
with

$$\Psi(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} \exp\left(-\frac{x^{2}}{2}\right) dx$$

A cantilever beam of span L carries a series of concentrated loads. The point of application of these loads are distributed as Poisson points on 0 to L. The magnitude of the loads are modeled as a sequence of iid-s with a common Rayleigh distribution with paramter σ . Determine the characteristic function of the reaction R.



$$R = \sum_{n=1}^{N(L)} w_n$$

$$P[N(L) = n] = \exp(-aL) \frac{(aL)^n}{n!}; n = 0, 1, 2, \cdots$$

$$p_w(w) = \frac{w}{\sigma^2} \exp(-\frac{w^2}{2\sigma^2}); w \ge 0$$

$$R = \sum_{n=1}^{N(L)} w_n \Rightarrow \Phi_R(\omega) = \left\langle \exp\left[i\omega R\right] \right\rangle = \left\langle \exp\left[i\omega\sum_{n=1}^{N(L)} w_i\right] \right\rangle$$

$$= P\left[N(L) = 0\right] + \sum_{k=1}^{\infty} \left\{ \exp\left[i\omega\sum_{n=1}^{k} w_i\right] N(L) = k \right\} P\left[N(L) = k\right]$$

$$= \exp(-aL) + \sum_{k=1}^{\infty} \left\{ \Phi_w(i\omega) \right\}^k \exp(-aL) \frac{(aL)^k}{k!}$$

$$= \sum_{k=0}^{\infty} \left\{ \Phi_w(i\omega) \right\}^k \frac{(aL)^k}{k!} \exp(-aL) = \exp\left[aL\left\{\Phi_w(i\omega) - 1\right\}\right]$$

$$\mathbf{Note:} \Phi_w(i\omega) = 1 + i\omega \exp\left(-\frac{\sigma^2 \omega^2}{2}\right) \left[1 + \operatorname{erf}\left(\frac{i\sigma\omega}{\sqrt{2}}\right)\right] \text{ (prove)}$$

Verify if

$$R(t_1, t_2) = \beta \exp\left[-\alpha |t_2 - t_1|\right] \sin\left(\gamma |t_2 - t_1|\right)$$

can be a valid autocovariance function of a zero mean random process. It is given that $\alpha, \beta, \gamma \ge 0$.

Required characteristics

$$\bullet R(t_1, t_2) = R(t_2, t_1)$$

$$\bullet R(t, t) > 0$$

$$\bullet R(t,t) > 0$$

$$\bullet \left| R\left(t_{1}, t_{2}\right) \right| \leq R\left(t_{1}, t_{1}\right) R\left(t_{2}, t_{2}\right)$$

No, since the function is not positive definite;

notice
$$R(t,t) = 0$$

Consider X(t) to be a stationary random process with zero mean. Define $Y(t) = X(t) + a(t)\dot{X}(t-\lambda)$ where

 λ and a(t) are determinisite. Determine autocovariance of

Y(t). It is given that

$$R_{XX}(\tau) = \sigma^2 \exp(-\alpha |\tau|) [1 + \beta |\tau|]$$

$$Y(t) = X(t) + a(t)\dot{X}(t-\lambda)$$

$$\langle Y(t) \rangle = \langle X(t) + a(t)\dot{X}(t-\lambda) \rangle = 0$$

$$\langle Y(t)Y(t+\tau) \rangle =$$

$$\langle [X(t) + a(t)\dot{X}(t-\lambda)][X(t+\tau) + a(t+\tau)\dot{X}(t+\tau-\lambda)] \rangle$$

$$= \langle X(t)X(t+\tau) \rangle + \langle X(t)a(t+\tau)\dot{X}(t+\tau-\lambda) \rangle$$

$$+ \langle a(t)\dot{X}(t-\lambda)X(t+\tau) \rangle$$

$$+ \langle a(t)\dot{X}(t-\lambda)A(t+\tau)\dot{X}(t+\tau-\lambda) \rangle$$

$$= R_{XX}(\tau) + a(t+\tau)R_{XX}(\tau-\lambda) + a(t)R_{XX}(\tau+\lambda)$$

$$+a(t)a(t+\tau)R_{XX}(\tau)$$
Simplify using
$$\langle \frac{d^{n}X(t+\tau)}{dt^{n}} \frac{d^{m}Y(t)}{dt^{m}} \rangle = (-1)^{m} \frac{d^{n+m}R_{XY}(\tau)}{d\tau^{n+m}}$$

$$R_{XX}(\tau) = \sigma^{2} \exp(-\alpha |\tau|) [1 + \beta |\tau|]$$

$$\frac{d}{d\tau} R_{XX}(\tau) = -\alpha \sigma^{2} \exp(-\alpha |\tau|) \operatorname{sgn}(\tau) [1 + \beta |\tau|]$$

$$+\sigma^{2} \exp(-\alpha |\tau|) \beta \operatorname{sgn}(\tau)$$

$$= \sigma^{2} \exp(-\alpha |\tau|) [-\alpha \operatorname{sgn}(\tau) + \operatorname{sgn}(\tau) \beta |\tau| + \beta \operatorname{sgn}(\tau)]$$

$$= \sigma^{2} \exp(-\alpha |\tau|) \operatorname{sgn}(\tau) [\beta - \alpha + \beta |\tau|]$$
Use
$$\operatorname{sgn}(\tau) = U(\tau) - U(-\tau) \& \frac{dU(t)}{dt} = \delta(t)$$
and derive
$$\frac{d^{2}}{d\tau^{2}} R_{XX}(\tau)$$

An undamped sdof system is set into free vibration by imparting random initial displacement and velocity. Characterize the system response. Determine the conditions under which the response can become stationary.

$$\ddot{x} + \omega^{2}x = 0; x(0) = u; \dot{x}(0) = v$$

$$\Rightarrow x(t) = A\cos\omega t + B\sin\omega t$$

$$\Rightarrow x(t) = u\cos\omega t + \frac{v}{\omega}\sin\omega t$$

$$\langle x(t)\rangle = \langle u\rangle\cos\omega t + \frac{\langle v\rangle}{\omega}\sin\omega t$$

$$\langle x(t)x(t+\tau)\rangle = \left\langle \left[u\cos\omega t + \frac{v}{\omega}\sin\omega t \right] \left[u\cos\omega(t+\tau) + \frac{v}{\omega}\sin\omega(t+\tau) \right] \right\rangle$$

$$R_{xx}(t,\tau) = \langle u^{2}\rangle\cos\omega t\cos\omega(t+\tau) + \frac{\langle uv\rangle}{\omega}\cos\omega t\sin\omega(t+\tau)$$

$$+ \frac{\langle uv\rangle}{\omega}\sin\omega t\cos\omega(t+\tau) + \frac{\langle v^{2}\rangle}{\omega^{2}}\sin\omega t\sin\omega(t+\tau)$$

$$R_{xx}(t,\tau) = \left\langle u^{2} \right\rangle \cos \omega t \cos \omega (t+\tau) + \frac{\left\langle uv \right\rangle}{\omega} \cos \omega t \sin \omega (t+\tau)$$

$$+ \frac{\left\langle uv \right\rangle}{\omega} \sin \omega t \cos \omega (t+\tau) + \frac{\left\langle v^{2} \right\rangle}{\omega^{2}} \sin \omega t \sin \omega (t+\tau)$$

$$\text{Take } \left\langle uv \right\rangle = 0 \,\&\, \left\langle u^{2} \right\rangle = \frac{\left\langle v^{2} \right\rangle}{\omega^{2}} = \sigma^{2}$$

$$\Rightarrow R_{xx}(t,\tau) = \sigma^{2} \left[\cos \omega t \cos \omega (t+\tau) + \sin \omega t \sin \omega (t+\tau) \right]$$

$$R_{xx}(t,\tau) = R_{xx}(\tau) = \sigma^{2} \cos \omega \tau$$

$$+\frac{\langle uv\rangle}{\omega}\sin\omega t\cos\omega(t+\tau)+\frac{\langle v^2\rangle}{\omega^2}\sin\omega t\sin\omega(t+\tau)$$

Take
$$\langle uv \rangle = 0 \& \langle u^2 \rangle = \frac{\langle v^2 \rangle}{\omega^2} = \sigma^2$$

$$\Rightarrow R_{xx}(t,\tau) = \sigma^2 \left[\cos \omega t \cos \omega (t+\tau) + \sin \omega t \sin \omega (t+\tau)\right]$$

$$R_{xx}(t,\tau) = R_{xx}(\tau) = \sigma^2 \cos \omega \tau$$

Conditions for existence of stochastic steady state are

$$\langle u \rangle = 0, \langle v \rangle = 0, \langle uv \rangle = 0 & \langle u^2 \rangle = \frac{\langle v^2 \rangle}{\omega^2} = \sigma^2$$

An input f(t) = 0 for t < 0 and $f(t) = \exp(-2t)$ for $t \ge 0$ to a linear system produces the output

$$y(t) = \frac{1}{2} \left[\exp(-2t) - \exp(-4t) \right]$$
. The system is now

excited by a Gaussian white noise excitation with unit strength. Determine the PSD of the steady state response.

$$f(t) = \exp(-2t)U(t)$$

$$\Rightarrow F(\omega) = \frac{1}{2+i\omega}$$

$$y(t) = \frac{1}{2} \left[\exp(-2t) - \exp(-4t) \right] U(t)$$

$$\Rightarrow Y(\omega) = \frac{1}{2} \left[\frac{1}{2+i\omega} - \frac{1}{4+i\omega} \right] =$$

$$H(\omega) = \frac{\frac{1}{2} \left[\frac{1}{2+i\omega} - \frac{1}{4+i\omega} \right]}{\frac{1}{2+i\omega}} = \frac{1}{2} \left[1 - \frac{2+i\omega}{4+i\omega} \right] = \frac{1}{4+i\omega}$$

$$S_{YY}(\omega) = \left| H(\omega) \right|^2 = \frac{1}{16+\omega^2} /$$

Notice

Notice

$$\dot{x} + \beta x = \exp(-\alpha t); x(0) = 0$$

$$\Rightarrow x(t) = A \exp(-\beta t) + \frac{\exp(-\alpha t)}{\beta - \alpha}$$

$$x(0) = 0 \Rightarrow A = -\frac{1}{\beta - \alpha}$$

$$\Rightarrow x(t) = \frac{1}{\beta - \alpha} \left[\exp(-\alpha t) - \exp(-\beta t) \right]$$

$$\Rightarrow H(\omega) = \frac{1}{\beta + i\omega}$$

Consider a random process

$$X(t) = P\sin(t + \Phi) + Y(t)$$

where P is determinstic, Φ is a random variable distributed uniformly in 0 to 2π , and Y(t) is a zero mean stationary Gaussian random process.

It may be assumed that Y(t) and Φ are independent.

Determine the joint pdf of X(t) and $\dot{X}(t)$.

Are X(t) and $\dot{X}(t)$ uncorrelated? independent?

$$X(t) = F \sin(t + \Phi) + Y(t)$$

$$\langle X(t) \rangle = 0$$

$$\langle X(t) X(t + \tau) \rangle = \langle [F \sin(t + \Phi) + Y(t)] [F \sin(t + \tau + \Phi) + Y(t + \tau)] \rangle$$

$$= F^{2} \langle \sin(t + \Phi) \sin(t + \tau + \Phi) \rangle + R_{YY}(\tau)$$

$$= \frac{F^{2}}{2} \cos \tau + R_{YY}(\tau)$$

$$\Rightarrow X(t) \text{ is wide sense stationary}$$

$$\begin{split} X(t) &= F \sin(t + \Phi) + Y(t) \\ \dot{X}(t) &= F \cos(t + \Phi) + \dot{Y}(t) \\ p_{X\dot{X}}(x, \dot{x} \mid \Phi = \phi) &= p_{Y\dot{Y}}(y, \dot{y}) \Big|_{\substack{y = x - F \sin(t + \phi) \\ \dot{y} = \dot{x} - F \cos(t + \phi)}} \\ &= \frac{1}{2\pi\sigma^2} \exp\left[-\frac{1}{2\sigma^2} \left\{ \left(x - F \sin(t + \phi)\right)^2 + \left(\dot{x} - F \cos(t + \phi)\right)^2 \right\} \right] \\ &\Rightarrow p_{X\dot{X}}(x, \dot{x}) &= \int_{-\pi}^{\pi} p_{X\dot{X}}(x, \dot{x} \mid \Phi = \phi) p(\phi) d\phi \\ &= \frac{1}{2\pi\sigma^2} \frac{1}{2\pi} \int_{-\pi}^{\pi} \exp\left[-\frac{1}{2\sigma^2} \left\{ \left(x - F \sin(t + \phi)\right)^2 + \left(\dot{x} - F \cos(t + \phi)\right)^2 \right\} \right] d\phi \\ &= \frac{1}{2\pi\sigma^2} \frac{1}{2\pi} \int_{-\pi}^{\pi} \exp\left[-\frac{1}{2\sigma^2} \left\{ \left(x - F \sin(t + \phi)\right)^2 + \left(\dot{x} - F \cos(t + \phi)\right)^2 \right\} \right] d\psi \end{split}$$

$$\begin{aligned} &p_{\chi\dot{\chi}}\left(x,\dot{x}\right) \\ &= \frac{1}{2\pi\sigma^2} \frac{1}{2\pi} \int_{-\pi}^{\pi} \exp\left[-\frac{1}{2\sigma^2} \left\{ \left(x - F\sin\psi\right)^2 + \left(\dot{x} - F\cos\psi\right)^2 \right\} \right] d\psi \\ &= \frac{1}{2\pi\sigma^2} \exp\left[-\frac{1}{2\sigma^2} \left\{x^2 + \dot{x}^2 + F^2\right\}\right] \frac{1}{2\pi} \int_{-\pi}^{\pi} \exp\left[-\frac{F}{\sigma^2} \left\{x\sin\psi + \dot{x}\cos\psi\right\}\right] d\psi \\ &= \frac{1}{2\pi\sigma^2} \exp\left[-\frac{1}{2\sigma^2} \left\{x^2 + \dot{x}^2 + F^2\right\}\right] I_0 \left[\frac{F}{\sigma^2} \sqrt{x^2 + \dot{x}^2}\right]; -\infty < x, \dot{x} < \infty \end{aligned}$$

$$X\left(t\right) = F\sin\left(t + \Phi\right) + Y\left(t\right)$$

$$\Rightarrow p_X\left(x \mid \Phi = \phi\right) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2\sigma^2} \left\{x - F\sin\left(t + \phi\right)\right\}^2\right]$$

$$p_X\left(x\right) = \int_{-\pi}^{\pi} p_X\left(x \mid \Phi = \phi\right) p\left(\phi\right) d\phi / f$$

$$p_X\left(\dot{x}\right) = \int_{-\pi}^{\pi} p_X\left(\dot{x}\mid \Phi = \phi\right) p\left(\phi\right) d\phi / f \end{aligned}$$

It can be verified that

$$p_{X\dot{X}}(x,\dot{x}) \neq p_X(x) p_{\dot{X}}(\dot{x})$$

Remark

- •X(t) and $\dot{X}(t)$ are uncorrelated because they are stationary random processes.
- $\bullet X(t)$ and $\dot{X}(t)$ are not independent

Let X(t) be a random process with $\langle X(t) \rangle = \mu_X(t)$

and
$$\left\langle \left[X\left(t\right) - \mu_{X}\left(t\right) \right]^{2} \right\rangle = \sigma_{X}^{2}\left(t\right)$$
. Show that
$$P\left[\left| X\left(t\right) - \mu_{X}\left(t\right) \right| \ge \varepsilon \text{ for some } t \text{ in } a \le t \le b \right]$$

$$P[|X(t) - \mu_X(t)| \ge \varepsilon \text{ for some } t \text{ in } a \le t \le b]$$

$$\leq \frac{1}{2\varepsilon^{2}} \left[\sigma_{X}^{2}(a) + \sigma_{X}^{2}(b) \right] + \frac{1}{\varepsilon^{2}} \int_{a}^{b} \sigma_{X}(t) \sigma_{\dot{X}}(t) dt; \varepsilon > 0$$

Note: This is the generalization of Chebychev's inequality for random processes.

[Hints] We have for a random process Y(t)

$$P\left[\sup_{a\leq t\leq b}\left|Y\left(t\right)\right|\geq\varepsilon\right]\leq\frac{1}{\varepsilon^{2}}E\left[\sup_{a\leq t\leq b}Y^{2}\left(t\right)\right]$$
 [Prove this]

$$Y^{2}(t) = Y^{2}(a) + 2\int_{a}^{t} \left[\frac{d}{du}Y(u)\right]Y(u)du$$

$$=Y^{2}(b)-2\int_{t}^{b}\left[\frac{d}{du}Y(u)\right]Y(u)du$$

$$\Rightarrow Y^{2}(t) \leq \frac{1}{2} \left[Y^{2}(a) + Y^{2}(b) \right] + \int_{a}^{t} \left[\frac{d}{du} Y(u) \right] Y(u) du$$

$$Y^{2}(t) = Y^{2}(a) + 2\int_{a}^{t} \left[\frac{d}{du} Y(u) \right] Y(u) du$$

$$= Y^{2}(b) - 2\int_{t}^{b} \left[\frac{d}{du} Y(u) \right] Y(u) du$$

$$\Rightarrow Y^{2}(t) \le \frac{1}{2} \left[Y^{2}(a) + Y^{2}(b) \right] + \int_{a}^{t} \left[\frac{d}{du} Y(u) \right] Y(u) du$$

$$\Rightarrow \sup_{a \le t \le b} Y^{2}(t) \le \frac{1}{2} \left[Y^{2}(a) + Y^{2}(b) \right] + \int_{a}^{t} \left[\frac{d}{du} Y(u) \right] Y(u) du$$

We have

$$\mathbf{E}[|UV|] \leq \left\{ \mathbf{E}[U^2] \mathbf{E}[V^2] \right\}^{\frac{1}{2}}$$

$$E\left[\sup_{a\leq t\leq b}Y^{2}\left(t\right)\right]\leq\frac{1}{2}E\left[Y^{2}\left(a\right)+Y^{2}\left(b\right)\right]$$

$$E\left[\sup_{a \le t \le b} Y^{2}(t)\right] \le \frac{1}{2} E\left[Y^{2}(a) + Y^{2}(b)\right]$$

$$+ \int_{a}^{t} \left\{ E\left\{\left[\frac{d}{du}Y(u)\right]^{2}\right\} E\left[Y^{2}(u)\right]\right\}^{\frac{1}{2}} du$$

Substitute $Y(t) = X(t) - \mu_X(t)$ in the above to get the required result.

Let X(t) be a stationary random process with zero mean and autocovariance function given by

$$R_{XX}(\tau) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{\tau^2}{2\sigma^2}\right) //$$

- •How many times can we differentiate this process?
- •Determine $P[\dot{X}(t) \le 0.75]$ if it is given that the process is Gaussian and $\sigma=1$.

$$R_{XX}(\tau) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{\tau^2}{2\sigma^2}\right)$$

$$\Rightarrow S_{XX}(\omega) = \exp\left(-\frac{\sigma^2 \omega^2}{2}\right) / \! /$$

$$R_{XX}(\tau) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{\tau^2}{2\sigma^2}\right)$$

$$\Rightarrow S_{XX}(\omega) = \exp\left(-\frac{\sigma^2 \omega^2}{2}\right) /\!\!/$$

$$\lambda_n = \int_{-\infty}^{\infty} \omega^n \exp\left(-\frac{\sigma^2 \omega^2}{2}\right) d\omega \text{ exist } \forall n = 1, 2, \dots$$

- $\Rightarrow R_{XX}(\tau)$ is differentiable at $\tau=0$ for all orders.
- $\Rightarrow X(t)$ is differentiable to any order n(in the mean square sense)

$$R_{XX}(\tau) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{\tau^2}{2\sigma^2}\right) / \frac{d}{d\tau} R_{XX}(\tau) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{\tau^2}{2\sigma^2}\right) \left(-\frac{\tau}{\sigma^2}\right)$$

$$\frac{d^2}{d\tau^2} R_{XX}(\tau) = \left(-\frac{1}{\sigma^2}\right) \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{\tau^2}{2\sigma^2}\right)$$

$$+ \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{\tau^2}{2\sigma^2}\right) \left(-\frac{\tau}{\sigma^2}\right)^2$$

$$\Rightarrow R_{\dot{X}\dot{X}}(\tau=0) = \left(\frac{1}{\sigma^2}\right) \frac{1}{\sqrt{2\pi\sigma}} = \frac{1}{\sqrt{2\pi}} : \sigma=1$$

$$p_{\dot{X}}(\dot{X}) = \exp\left(-\frac{1}{2}2\pi\dot{X}^2\right) = \exp\left(-\pi\dot{X}^2\right)$$

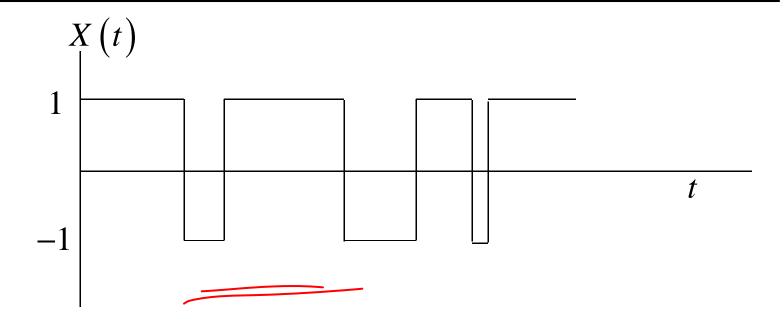
$$P[\dot{X}(t) \le 0.75] = \int_{-\infty}^{0.75} \exp\left(-\pi\dot{X}^2\right) d\dot{X} = 0.97$$

Let N(t) be a Poisson random process with arrival rate λ .

Define
$$X(t) = (-1)^{N(t)}$$
.

Determine the mean and covariance of X(t).

Note: X(t) is known as semi random telegraph signal.



$$X(t) = (-1)^{N(t)}.$$

$$\Rightarrow X(t) = \begin{cases} 1 \text{ if } N(t) = 0 \text{ or } N(t) \text{ is even} \\ -1 \text{ if } N(t) \text{ is odd} \end{cases}$$

$$P[X(t) = 1] = P[N(t) = 0 \text{ or } N(t) \text{ is even}]$$

$$= \exp(-\lambda t) \left[1 + \frac{(\lambda t)^2}{2!} + \frac{(\lambda t)^4}{4!} + \cdots \right] = \exp(-\lambda t) \frac{\lambda t}{2!}$$

$$P[X(t) = -1] = P[N(t) \text{ is odd}]$$

$$= \exp(-\lambda t) \left[\lambda t + \frac{(\lambda t)^3}{3!} + \frac{(\lambda t)^5}{5!} + \cdots \right] = \exp(-\lambda t) \sinh \lambda t$$

$$\langle X(t) \rangle = P[X(t) = 1](1) + P[X(t) = -1](-1)$$

$$= \exp(-\lambda t) [\cosh \lambda t - \sinh \lambda t] = 2 \exp(-2\lambda t)$$

 $X(t)X(t+\tau)=1$ if there are even number of occurrences in t to $t + \tau$.

 $X(t)X(t+\tau) = -1$ if there are odd number of occurrences in t to $t + \tau$.

$$\Rightarrow$$

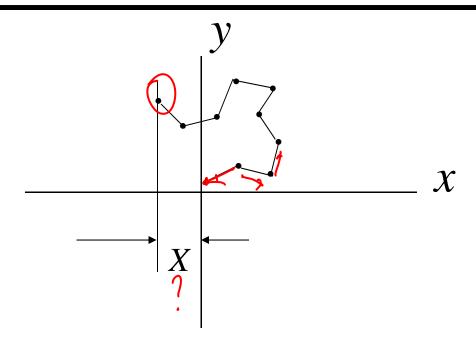
$$\langle X(t)X(t+\tau)\rangle =$$

$$(1) \sum_{n \text{ even}} \exp(-\lambda \tau) \frac{(\lambda \tau)^n}{n!} + (-1) \sum_{n \text{ odd}} \exp(-\lambda \tau) \frac{(\lambda \tau)^n}{n!} = \exp(-2\lambda \tau)$$

$$\Rightarrow R_{XX}(t, t + \tau) = R_{XX}(\tau) = \exp(-2\lambda |\tau|)$$

$$\Rightarrow R_{XX}(t, t + \tau) = R_{XX}(\tau) = \exp(-2\lambda |\tau|)$$

A random walk is performed on a two-dimensional plane with a uniform step size of Δ . At every step the direction α_i is a random variable. α_i -s can be taken to be an iid sequence with a common pdf that is uniformly distributed in 0 to 2π . Find the distribution of the x-coordinate after n steps.



$$\Phi_{X}(\omega) = \left[J_{0}(\omega\Delta)\right]^{n}$$

$$p_{X}(x) = \frac{1}{\pi} \int_{0}^{\infty} \left[J_{0}(\omega \Delta) \right]^{n} \cos \omega x d\omega$$

$$\Phi_{X}(\omega) = \left[J_{0}(\omega\Delta)\right]^{n}$$

$$p_{X}(x) = \frac{1}{\pi} \int_{0}^{\infty} \left[J_{0}(\omega\Delta)\right]^{n} \cos \omega x d\omega /$$

$$\left[J_{0}(\omega\Delta)\right]^{n} = \left(1 - \frac{\Delta^{2}\omega^{2}}{2^{2}} + \frac{\Delta^{4}\omega^{4}}{2^{2}4^{2}} - \cdots\right)^{n}$$

Consider the limit $n \to \infty$ such that $\Delta \sqrt{n} \to c$.

$$= \left(1 - \frac{c^2 \omega^2}{n 2^2}\right)^n = \exp\left(-\frac{c^2 \omega^2}{4}\right)$$

$$p_X(x) = \frac{1}{\sqrt{\pi c}} \exp\left(-\frac{x^2}{c^2}\right); -\infty < x < \infty$$

Let the time interval 0 to T be divided into a sequence of equal intervals of length T. Consider a sequence

of *n* Bernoulli trials with $P(success) = \frac{1}{2}$. Define

$$X(t) = \begin{cases} 1 \text{ if success on } n^{\text{th}} \text{ trial} \\ -1 \text{ if failure on } n^{\text{th}} \text{ trial} \end{cases} (n-1)T < t < nT$$

Find mean and autocorrelation of X(t).

Furtheremore, let e be a random variable distributed uniformly in 0 to T and independent of X(t).

Define Y(t) = X(t-e). Determine the mean and autocorrelation of Y(t).

$$X(t) = \begin{cases} 1 \text{ if success on } n^{\text{th}} \text{ trial} \\ -1 \text{ if failure on } n^{\text{th}} \text{ trial} \end{cases} (n-1)T < t < nT$$

$$\langle X(t) \rangle = 1 \times \frac{1}{2} - 1 \times \frac{1}{2} = 0$$

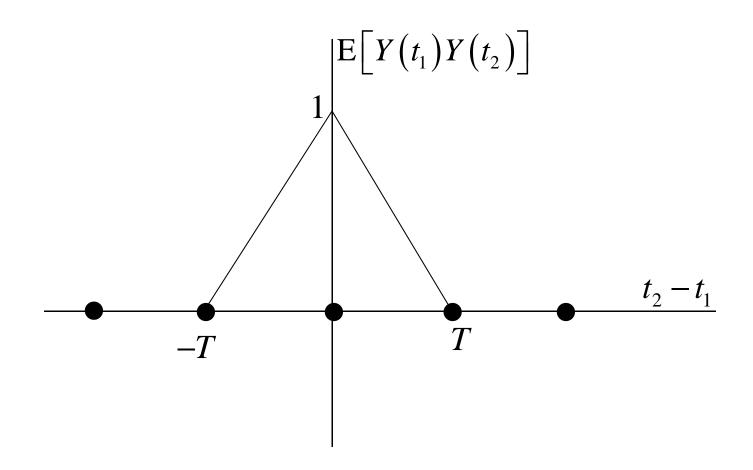
$$\langle X^{2}(t) \rangle = 1^{2} \times \frac{1}{2} + (-1)^{2} \times \frac{1}{2} = 1$$

$$\langle X(t_{1})X(t_{2}) \rangle = \begin{cases} 1 \text{ if } (n-1)T < t_{1}, t_{2} < nT \\ 0 \text{ otherwise} \end{cases}$$

$$\begin{aligned} Y(t) &= X \left(t - \varepsilon \right) \\ \Rightarrow & \mathrm{E} \left[Y(t) \right] = \mathrm{E} \left[\mathrm{E} \left[Y(t) \middle| \varepsilon \right] \right] = \mathrm{E} \left[X \left(t - \varepsilon \right) \middle| \varepsilon \right] = 0 \\ & \mathrm{E} \left[Y(t_1) Y(t_2) \right] = \mathrm{E} \left[X \left(t_1 - \varepsilon \right) X \left(t_1 - \varepsilon \right) \right] \\ & = \mathrm{E} \left[\mathrm{E} \left[X \left(t_1 - \varepsilon \right) X \left(t_2 - \varepsilon \right) \middle| \varepsilon \right] \right] \\ & \mathrm{E} \left[X \left(t_1 - \varepsilon \right) X \left(t_2 - \varepsilon \right) \middle| \varepsilon \right] = 0 \text{ if } \left| t_1 - t_2 \middle| > T \right| \\ & \mathrm{If} \left| t_1 - t_2 \middle| < T \right| \\ & \mathrm{E} \left[X \left(t_1 - \varepsilon \right) X \left(t_2 - \varepsilon \right) \middle| \varepsilon \right] = \begin{cases} 1 \text{ if } e < T - \middle| t_1 - t_2 \middle| \\ 0 \text{ otherwise} \end{cases} \end{aligned}$$

$$\Rightarrow E[Y(t_1)Y(t_2)] = 1 \times P[e < T - |t_1 - t_2|]$$

$$= 1 - \frac{|t_1 - t_2|}{T}$$



Given a postive function $S(\omega)$ find a stochastic process whose PSD is $S(\omega)$. [Existence theorem]

Determine a LTI system with $H(i\omega) = \sqrt{S(\omega)}$ and pass a zero mean stationary Gaussian white noise with unit strength through this system. The output process would be a zero mean stationary process with PSD= $S(\omega)$.

Alternative

Determine
$$a^2 = \int_{-\infty}^{\infty} S(\omega) d\omega$$
 and define $f(\omega) = \frac{S(\omega)}{a^2}$.

Clearly,
$$f(\omega) \ge 0 & \int_{-\infty}^{\infty} f(\omega) d\omega = 1$$
; also, $f(\omega) = f(-\omega)$

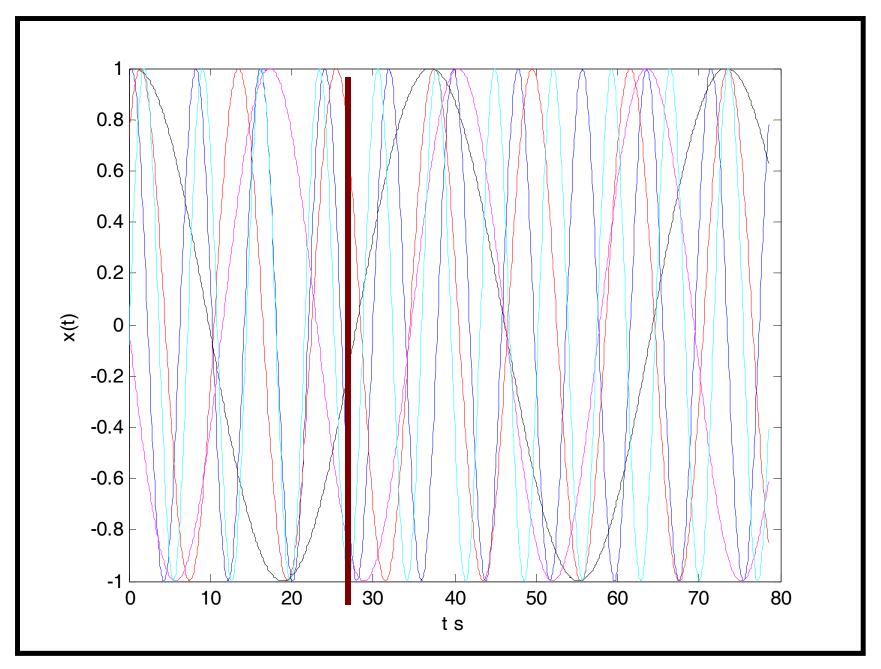
 $\Rightarrow f(\omega)$ has the properties of a pdf of a random variable.

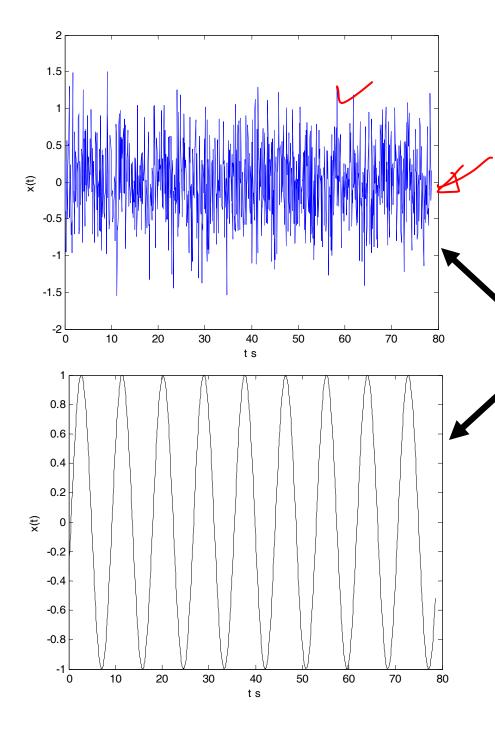
Let $X(t) = a\cos(\omega t + \phi)$ where ω and ϕ are random variables with $\omega \sim f(\omega), \phi \sim U[0, 2\pi], \&\omega \perp \phi$.

 $\langle X(t) \rangle = 0$ [Prove it; start with finding mean conditioned on ω]

$$\langle X(t_1)X(t_2)\rangle = \int_{-\infty}^{\infty} \int_{0}^{2\pi} a\cos(\omega t_1 + \phi)a\cos(\omega t_2 + \phi)p_{\omega\phi}(\omega, \phi)d\omega d\phi$$

$$R_{XX}(\tau) = \frac{a^2}{2\pi} \int_{-\infty}^{\infty} \cos \omega \tau f(\omega) d\omega \Rightarrow \underline{S_{XX}(\omega)} = a^2 f(\omega) \text{ [OK]}$$





24d2=84) -1-

Remarks

- PSD is an ensemble property
- •These two time histories represent samples from two different processes having the same mean and PSD function.

X(+) = a cos(w++p)

Remark

The following three processes share the same form of PSD The sample realizations are dramatically different.

$$(1)^{N(t)}$$

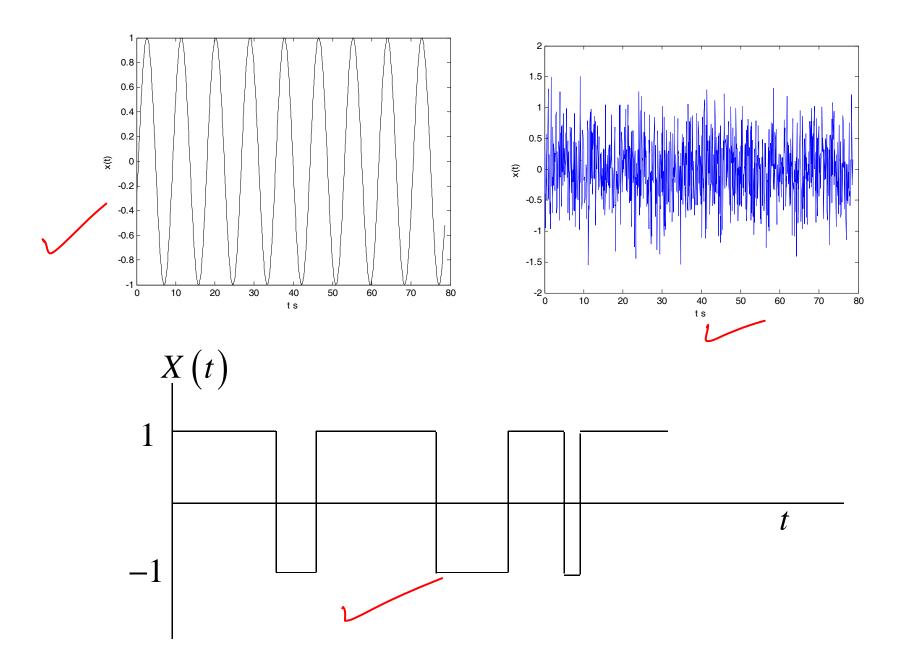
$$(2)^{N(t)}$$

$$(3)^{N(t)}$$

$$(4)^{N(t)}$$

•
$$X(t) = (-1)^{N(t)}; N(t)$$
: Poisson process with rate λ
• $X(t) = \cos(\omega t + \phi); \omega \sim \frac{S(\omega)}{\infty}; \phi \sim U[0, 2\pi]; \omega \perp \phi$
• $S(\omega) = \cos(\omega t + \phi); \omega \sim \frac{S(\omega)}{\infty}; \phi \sim U[0, 2\pi]; \omega \perp \phi$

• [Steady state response] $\dot{X} + \alpha X = \xi(t); X(0) = X_0$



Discussion on properties of processes with Independent increments

Factor of Safety A Probot pailure