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Recall

e Uncertainty modeling using theories of
probability and random processes

e Definitions of probability
— Classical definition PcA)=m/n
— Relative frequency definition

P(4) =limZ

n—x n

— Axiomatic definition



Recall (continued)

Axiomatic definition of probability

Undefined g
notions

)

eExperiment

oTrial Random

«Outcome experiment
—
«Sample point: element of sample Axioms
space P(4)=20
*Events are subsets of sample space P(Q)=1
on which we assign probability P(AUB)=P(A4)+P(B)
«Axiomatic definition does not ifANB=¢
prescribe how to assign probability




Recall (continued)

«Conditional Probability

Definition
P(A| B)= Probability of event A given that B has occurred

_PlAn B)'P(B);t 0.

P(B)

«Stochastic independence

Notation : A and B are independent
A1 B= P(AnB)=P(4)P(B)

«Total probability theorem
*Bayes theorem



Random variable

E
4 A Evente\
eExperiment p(e)
Trial Random
0O I experiment S R
eQutcome space
Undefined 0 1
notions R Ao
o0 00 P(4)=0
P(Q)=1
P(AUB)=P(A)+P(B)
ifANB=¢

Random variableis a function from sample space
into real line such that

(1) for every x € R, {w: X () < x}is an event,

(2) P(w: X (w) = £0)=0




Meaning of {X(w)< x}

Example Consider the experiment of die tossing.
Q={1 2 3 4 5 6

Define X (w,)=10i

{X<40}={l 2 3 4}
(X <5}=¢
{X <100}=0

Observation
{X(a)) < x} is a subset of Q and hence

an element of B and hence an event on
which we assign probabilities.

We write {X (o) < x} = {X < x}




Need for introducing the notion of a random variable
(a) Enables us to deal with Q which is not numerically valued.
(b) Enables quantification of uncertainties.

(c) Forms the basis on which gunatities such as mean,
standard deviation, covariance, etc., are defined.




Probability Distribution Function (PDF {PX (x)]

Definition

PX(x,a))zP{X(a))Sx} F —0< X<

Notation

Py (x,@)= Py (x) (the dependence on w is not explicitly displayed)

XCoo} RV
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Properties

(@) 0<P, (x)<1

(b) Py (0) = P{X <o0}=P(Q) =1
(¢) Py (—0) = P{X < ~o0}= P(p) =0
(d) x, >x = Py (x;) 2 Py (x;)

PDF Is monotone nondecreasing.
Let x, > x,.

PDF is right continuous.




Example: Die tossing: Q=(1 2 3 4 5 6); X(w)=10i
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Example

e Consider the time of arrival of a train
on the platform.

e Let T =arrival time.

e Let any timeinstant in the interval
(£,2, ) be equally likely.

° 2= (tl’ tz)

e Let 7 be the random variable
which denotes the time of arrival.

e Let us divide the interval (7, ¢, ) into
N discrete time segments

t,t )witht =t,+—I(t, -t in=012,---, N.
v

eWetakeT=¢ ift <t<t ,;
e For N < oo, the PDF of T would have
discontinuitiesat¢, ,n=1,2,---, N -1.

e As N — oo, the PDF of T becomes continuous.

n=12,---,N-1.




Random variables

Discrete : PDF proceeds only through jumps.

Continuous : PDF proceeds without any jumps.

Mixed : PDF proceeds with both jumps and continuously

PDF of a
Mixed RV

lim P.(x+¢&)— P,(x)

0<e—0

—




Probability density function (pdf)

Definition
dPy (x)
dx

py(x)=

= P, () = [ py ()

Px (x)

Properties

P,(0)=P{X <0}=P(Q)=1= IpX(u)du

P{a £X<b}=ipX(u)du

py(x)dx=P{x< X <x+dx}
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Heaveside’s step function

U(x—a) |

U(x—a)=0 x<a
=1 x>a

— X=d




Example 1: Box function




Dirac’s delta function

[(x) = F[U(x)-U(x-a)]
Iy flx)= iy FlUu(x)-U(x~a)]
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Dirac’s delta function

o(x—a)=0 forx=a

T5(x—a)dx =1




Example-2: Stair case function

f(x),
00) a b -
f(x)=alU(x)-U(x-a)l+ lU(x—a)-U(x-b)]

T —alo(v)-

S(x—a)l+ plo(x—a)-o(x—b)]




Commonly encountered random variables

Models for rare events
Models for sums

Models for products
Models for extremes

— Highest

— Lowest

Models for waiting times

i

Limit
theorems




Bernoulli random variable L3
The random experiment has only two outcomes:
success and failure.

-y

Y

Q=(S F),

Let

P(S)=P(X =0)=p
P(F)=P(X =1)=1p

P,(x)= pU(x)+ (1~ p)U(x-1)
p(x)=pS(x)+(@1- p)d(x-1).

Check:

TPX (x)dx =0j3[p5(x) +(1-p)o(x —1)]dx =1.

Remarks:

* p is the parameter of the Bernoulli random variable.
*Discrete random variable

*Finite sample space

*Basic building block




Repeated Bernoulli trials: Binomial random variable.

The random experiment here consists of N repeated Bernoulli trials.
Assumptions

(a) The random experiment consists of N independent trials.

(b) Each trial results in only two outcomes (success/failure)

(c) P(success) remains constant during all trials.

Define X=number of successes in N trials; X =0,1,2,3,---, N.

P(X=k)="C,p"1-p)" " k=012,---,N

Notes

n

Binomial theorem: (p+¢)" => "C.p/¢"”"

r=0
.
(N—F)k!




Consider a sequence of N trials resulting in & successes.
Occurrence of k£ successes implies the occurrence of (N - k) failures.

Probability of occurrence of one such sequence=p* (1— p)"*.
Number of such possible sequences="C,.

These sequences are mutually exclusive.

L P[X =k]=" C.p*@A-p)*"

= P[X < m] = iNCkpk(l—p)N_k

k=0

N

= P[X<N]=) YCpfa-p)' =1
k=0

(By virtue of binomial theorem. )

Hence the name binomial random variable.




Remarks
A binomial random variable is denoted by B(N, p).
N and p are the paramters of this random variable.

e Discrete random variable
e Sample space is finite






Geometric random variable
Random experiments: as in binomial random variable.
N=number of trials for the first success; N =1,2,---, 0.

P(first success in N-th trial) = P(success on the N-th trial ~ failures on the first (N -1) trials)
= P(N= n) = (1—p)”_1p;n =1,2,---,00.

D> P(N=n)=) (1-p)""p (this must be =1).
n=1 n=1
Ex: let p=0.6
= Z(l- p)p = 2‘40.4"'1 x0.6
n=1 n=1

= O.6[1+ 0.4+04%+04° +-. ]

The expression inside the bracket is a geometric progression.
Hence the name geometric random variable.
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Geometric random variable with p=0.4
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Models for rare events : Poisson random variable

(a) We are looking for occurrence of an isolated phenomenon

In a time/space continuum.

(b) We cannot put an upper bound on the number of occurrences.
(c) Actual number of occurrences is relatively small.

Examples : goals in football match (time continuum), defect in a yarn
(1- d space continuum), typos in a manuscript (2 - d continuum),
defect in a solid (3 - d continuum). Stress at a point exceeding elastic

limit during the life time of a structure.
k

a
P(X =k)= exp(—a)ﬂ;k =0,1,2,---
Check

o0 k o0 k

P(X <o0)= Zexp(—a)% = exp(—a)Z% =exp(—a)exp(a)=1.

k=0 : k=0




Poisson random variable with a=5

*Discrete RV

1 «Countably infinite
sample space
*Useful in wide

12 14 1B 18 0 variety of contexts
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