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This Lecture

e What is this course about?
* Begin reviewing theory of probability



Loads on engineering structures

Earthquake

Wind

Waves

Guideway unevenness
Traffic

*Dynamic
*Random
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Loads on engineering structures

e Guideway unevenness
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Uncertainties in structural engineering problems

Loads (earthquakes, wind, waves, guide way
unevenness...)

Structural properties (elastic constants, mass, damping,
strength, boundary conditions, joints...)

Modeling (analytical, computational and experimental)
Condition assessment in existing structures
Human errors



Stochastic structural dynamics

*Branch of structural dynamics in which the uncertainties in loads are
guantified mathematically using theory of probability, random processes
and statistics.

Random vibration analysis; probabilistic structural dynamics
Failure of structures under uncertain dynamic loads
*Design of structures under uncertain dynamic loads




Mathematical models for uncertainty:

eProbability, random variables, random processes, statistics.
eFuzzy logic.

e|nterval algebra.

eConvex models.




Review of probability and random processes

Suggested books

1. A Papoulis and S U Pillai, 2006, Probability, random variables and stochastic processes,
4t Edition , McGraw Hill, Boston.

2.J R Benjamin and C A Cornell, 1970, Probability, statistics, and decision for civil engineers,
McGraw Hill Book Company, Boston.

Definitions of probability:

1.Classical definition
2.Relative frequency
3.AXiomatic




Classical (imathematical or a priori) definition:

If a random experiment can result in 7 outcomes, such that
these outcomes are

equally likely

‘mutually exclusive

«collectively exhaustive
and, if out of these n outcomes, m are favourable to the
occurrence of an event A, then the probability of the event A is
given by P(A)=m/n.

Example: P(getting even number on die tossing)=3/6=1/2.

Objections
‘What is “equally likely”?
‘What if not equally likely? (what is the probability that sun
would rise tomorrow?)
*No room for experimentation.
Probability is required to be a rational number.
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Relative frequency (posteriori) definition

If a random experiment has been performed n number of times and if m outcomes
are favorable to event A, then the probability of event A is given by

P(4)=1limZ,

n—o n

Objections

*What is meant by limit here?
*One cannot talk about probability without conducting an experiment.

*What is the probability that someone meets with an accident tomorrow?
*Probability is required to be a rational number.




Example:

Toss a die 1000 times; note down how many times an even
number turns up (say, 548).

P(even number)=548/1000.
N=1000 here is deemed to be sufficiently large.
There is no guarantee that as the

number of trials increases, the probability would converge.
The die need not be “fair”.




Axiomatic definition

Undefined notions
(primitives)

— Experiments

— Trials

— Outcomes

An experiment is a physical
phenomenon that can be
observed repeatedly. A single
performance of an experiment is
a trial. The observation made on
a trial is its outcome.

Axioms are statements that are
commensurate with our
experience. No proofs exist. All
truths are relative to the
accepted axioms.
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« Random experiment (&)

IS an experiment such that

— the outcome of a specific trial
cannot be predicted, and

— it is possible to predict all
possible outcomes of any trial.

Remarks

. g : the first technical term.

« Example: Toss a coin. We know that
we will either get head or tail. In any
given trial however we do not know
before hand what would be the
outcome.

« What cannot be envisaged, does not
enter the theory.




Axiomatic definition (continued)

Sample space (Q2)
Set of all possible outcomes of a random experiment.
Examples

(1) Coin tossing: Q=(h ¢); Cardinality=2; finite sample space.

(2) Dietossing: Q=(1 2 3 4 5 6); Cardinality=6; finite sample space.

(3) Die tossing till head appears for the first time:

Q=(h th tth ttth tttth ---); Cardinality=co; countably infinite sample space.
(4) Maximum rainfall in a year: Q=(0 < X<o);

Cardinality=00; uncountably infinite sample space.




Elements of Q are called sample points.
$ can be thought of as outcome space.

Consider a set with n elements.
Number of subsets="C_ + "C, +"C, +---+"C, =(1+1)" =2"




Axiomatic definition (continued)

Event space (B)
Qs finite: B is the set of all subsets of Q.
Ex:Q=(h tB=(h t Q ¢) Elements of B are

known as events

Cardinality of B =2"; N = cardinality of Q.

In general : B is the sigma algebra of subsets of &
Definition

Let C be a class of subsets of Q. If
@QAcQ= A Q&

() {4}, cQ= OAI. eQ
=1

then, we say that C iIs a sigma algebra of subsets of Q.




Axiomatic definition (continued)
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Note:

We wish to assign probability to not only to elementary events
(elements of sample space) but also to compound events
(subsets of sample space).

When sample space is not finite, ( as when it is the real line)
there exists subsets of sample space which cannot be
expressed as countable union and intersections of intervals.

On such events we will not be able to assign probabilities consistent
with the third axiom.

To overcome this difficulty we exclude these events from the event space.
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Proof 1

EUVE =Q;, ENE‘ =9
P(EUE®)=P(E)+ P(E°)(Axiom 3)
= P(Q)=P(E)+ P(E°)=1(Axiom 2)
= P(E°)=1- P(E)

e

Proof 4 :Use proof 1with £ =Q;
Note : Q2" = ¢.
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Proof 3

AUBzAU(AC mB) Am(Ac mB):gb

= P(4UB)=P(4)+ P(4° A B)(Axiom3)---(1)
B = (AmB)u(AC mB)W;\B)m(AC mB): ¢
= P(B)=P(4 B)+ P(4° ~ B)(Axiom3)---(2)
From (1) and (2)

P(4UB)=P(A4)+P(B)-P(4NnB)

Proof 2:hint :Use proof 3.




Conditional probability and stochastic independence

Definition
P(A| B)= Probability of event A given that B has occurred

_PlAn B)'P(B);t 0.

P(B)

Example: Fair Die tossing

Q=(1 2 3 4 5 6)

The die has been tossed and an even number has been observed.
P(2|Even)=?

Approach 1: Even=(2 4 6)

P(2|Even)=1/3 (Classical definition)

Approach 2: _ _ |
P P(2 Even) Conditional Probability obeys all the axioms
( )= P(Even) (1) P(A | B) >0
(2 Even)=(2) 2) P(Q|B):1
1/6
= P(2|Even)=-=1/3 () P(4uC|B)=P(A|B)+P(C|B)ifAnC=¢




Stochastic independence

Events 4 and B are said to be stochastically independent

If any one of the following four statements is true:

(1) The probability of occurrence of event A4 is not affected

by the occurrence of event B.

(2) P(ANB)=P(4)P(B)

(3) P(4|B)=P(4)

P(ANB
P(B)

Notation : A and B are independent
A1 B= P(AnB)=P(A4)P(B)

(4) ) _ P(A): P(B) 0.

Remarks
(1) Defintion 1 is not useful to verify if 4 and B are independent.
(2) If we need to verify if 4 and B are independent, we need to

find P(4), P(B), P(B| A),&P(A N B) and use defintions 2,3, or 4.
(3) Independence of more than two events can also be defined. Thus

{A,.}f’:1 are said to be independent if
(WP(4 N 4;)=P(4)P(4,)Vi,j=123&i= j,and
(2QP(4, N Ay N Ay)=P(4)P(4,)P(4)




Example

Toss two coins.

Q=(hh ht th tt)

Let a,b >0, such that (a +b) =1.

Let P(hh) =a® P(tt)=b> P(ht)=P(th)=ab.

Clearly P(Q)=P(hh)+ P(tt)+ P(ht)+ P(th) = (a +b)* =1.
Define two events

E, =head on the first coint=(h%  ht)

E, =head on the second coint=(/h  th)
Question: verify if E; & E, are independent.

P(El) :P(hh ht) =a’+ab=a(a+b)=a
P(E,) :P(hh th) =a’°+ab=a(a+b)=a
P(E,NE,)=P(hh)=a’

= P(E,NE,)=P(E,)P(E,)

= E, & E, are independent.







Example

Consider a random experiment involving tossing
of two dies. Define

A =(evenondiel)

B = (evenon die 2)

C = (sum of numberson dieland die 2)
Examine if A, B, and C are independent.




Total probability theorem
Let {A, }Zl constitute a partition of Q.

N

Thatis, | |4 =0; 4.n4,=¢vi=].
=1

Let B be a set.

5-U(4n8

)= | Ul e |- 2r( )

P(B):ZP(BMI.)P(AI.)//

f(hiOR) = T(BIA) P
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Bayes' theorem
P(4, nB) P(B|4)P(4)

R T R ()
P(B| 4)P(4)
D P(Bl4)P(4)

P(A.) =a priori probability
P(A. | B) = posteriori probability

P(4,|B)=




