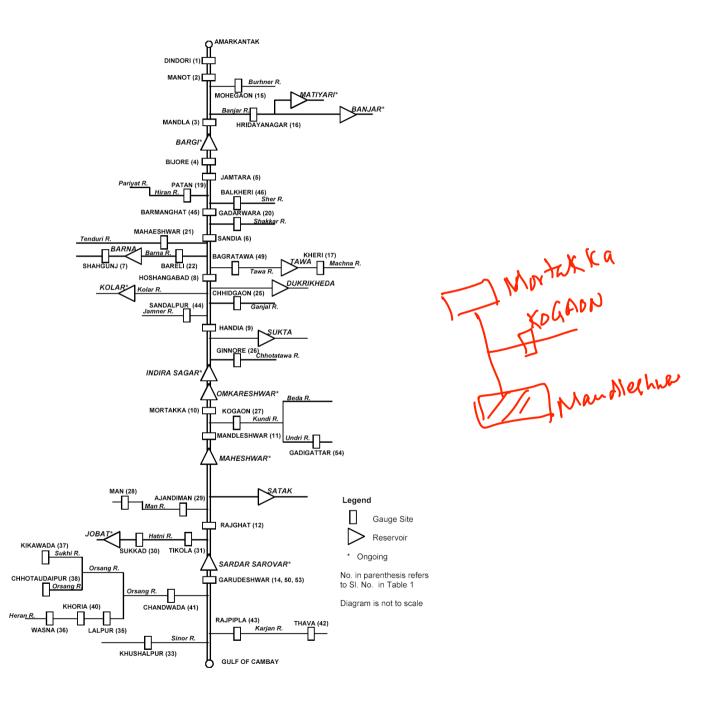


STOCHASTIC HYDROLOGY

Lecture -37 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

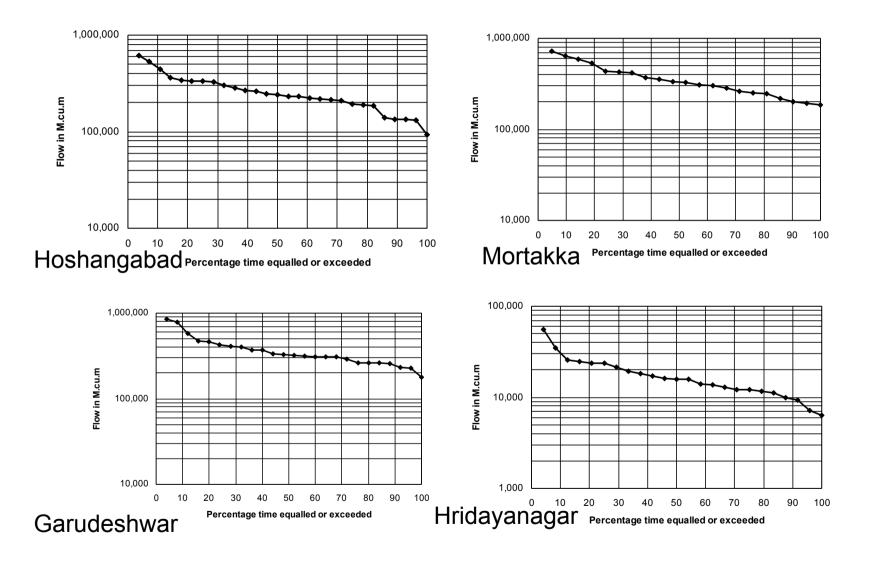

Summary of the previous lecture

- Data consistency checks
 - Filling the missing data for an example basin
 - Monsoon period
 - Non-monsoon period
 - Statistical analysis of data
 - Introduction to specific flow

Specific flows:

- The specific flow is expressed as flow volume per unit area of the catchment
- Represents the catchment response to precipitation
- If a number of gauge stations are located in the same hydroclimatic region with similar land use patterns, then the specific flows computed with data at the gauge stations must be comparable
- Annual specific flows are computed as the ratio of average annual flow to catchment area

- This statistic is useful in comparing the runoff per unit area from different sub-catchments within the basin
- The specific flow is computed in MCum/sq.km; a measure of the annual average runoff in meters
- The average annual rainfall in the basin varies from around 700 mm to around 1650 mm


Annual and Seasonal Specific Flows for Gauge Sites

					· · · · · · · · · · · · · · · · · · ·			
S.No.	Gauge site	Catch-ment area (sq. km)	Data used (period)	Duration (years)	Annual specific flows (MCum per sq. km)	Seasonal specific flows (MCum per sq. km)		
1	Dindori	2,292.00	1988-1999	12	0.5460	0.4881		
2	Manot*	4,667.00	1976-1999	24	0.6519	0.6113		
3	Mandla Town	Not available	1977-1980 1993-1995	7	NA	NA		
4	Bijore	14,561.00	1988-1999	12	0.5984	0.4361		
5	Jamtara	17,157.00	1971-1999	29	0.5350	0.4569		
6	Sandia	33,953.50	1978-1999	22	0.4247	0.3569		
7	Hoshangabad	44,543.00	1972-1999	28	0.5148	0.4577		
8	Handia	54,027.00	1977-1999	23	0.4684	0.4116		
9	Mortakka	67,184.00	1970-1978 1988-1999	21	0.4659	0.4145		
10	Mandleshwar	72,809.30	809.30 1971-1999		0.4565	0.4132		
11	Rajghat	77,674.10	1971-1999	29	0.4349	0.3943		
12	Garudeshwar	87,892.00	1971-1975 1980-1999	25	0.3670	0.3278		
13	Mohegaon	4,622.00	1977-1999	23	0.4758	0.4506		
14	Hridayanagar	3,370.00	1976-1999	24	0.4598	0.4411		
15	Patan	3,950.00	1979-1999	21	0.3895	0.3563		

Annual and Seasonal Specific Flows for Gauge Sites

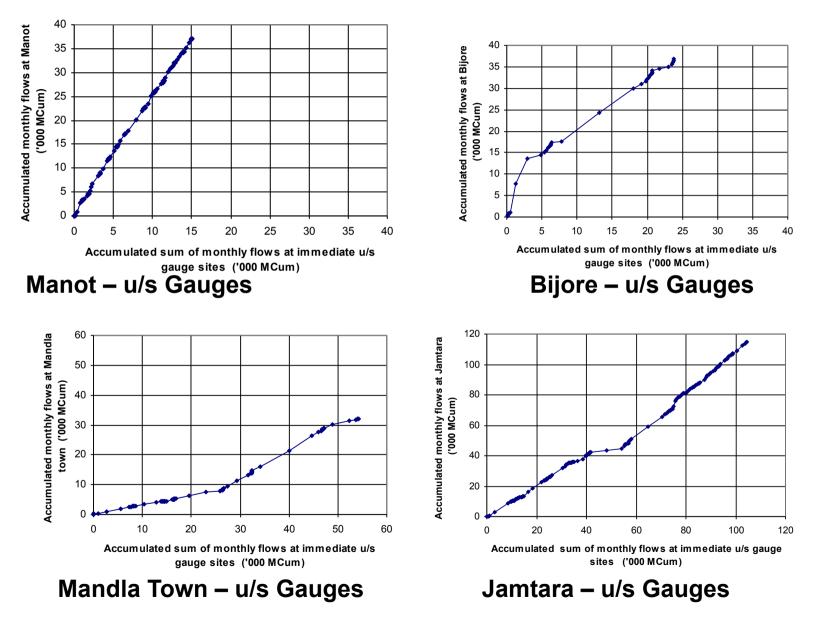
S.No.	Gauge site	Catch-ment area (sq. km)	Data used (period)	Duration (years)	Annual specific flows (MCum per sq. km)	flows	sq.
16	Gadarwara	2,270.00	1977-1999	23	0.5749	0.5373	
17	Maheshwar	1,495.00	1985-1993 1996-2000	14	0.4984	0.4269	
18	Bareli	1,590.00	1985-1993 1998-2000	12	0.4760	0.4109	
19	Chhidgaon	1,729.00	1976-1999	24	0.5824	0.5548	
20	Ginnore	4,815.70	1979-1999	29	0.4380	0.4246	
21	Kogaon	3,955.00	1978-1999	22	0.2756	0.2652	
22	Ajandiman	997.00	1985-1993 1996-2000	14	0.2559	0.2455	
23	Tikola	1,339.00	1985-1993 1996-1999	13	0.3974	0.3355	
24	Chandwada	4,782.00	1979-1999	21	0.3044	0.3017	
25	Sandalpur	552.00	1987-1993 1996-2000	12	0.4096	0.3692	
26	Barmanghat	26,453.00	1988-1999	12	0.4779	0.3731	
27	Balkheri	1,508.00	1977-1999	23	0.4789	0.4601	
28	Barman	26,563.00	1970-1988 1991-1995	24	0.4364	0.3991	
29	Bagratawa	6,018.00	1976-1991	16	0.2994	0.2910	
30	Garudeshwar A.M	Not available	1970-1976	7	NA	NA	

Flow duration curves

Consistency Checks for the basin:

- (a) Consistency of flow data at a gauge site with the sum of flows from immediate upstream gauges,
- (b) Consistency of flow data with respect to specific flows,
- (c) Consistency of flow data with the flow data at an immediate neighboring (upstream) station, and
- (d) Consistency of the reservoir inflow data where available, with the data from the surrounding gauge sites

(a) Homogeneity and consistency with respect to immediate upstream gauges :


- For checking the homogeneity of data at a site with respect to the data from upstream gauges, the double mass curve approach is used
- A double mass curve is plotted between accumulated monthly flows at the site being examined and the corresponding accumulated sum of monthly flows at immediate upstream gauge sites

- If the net runoff in the intervening catchment (accounting for utilization) is added to the outflow at the upstream station/s, it should equal the flow at the downstream station.
- The double mass curve analysis is mainly useful in assessing whether the data at a given station is inhomogeneous

i.e., whether data at the station has been affected due to circumstances like change in the method of measurement, shift in location etc., provided that the other stations are not so affected

- The double mass curve does not directly indicate whether data at one station is hydrologically consistent with that at one or more upstream stations
- A nonlinear double mass curve can occur even when data at the two stations are consistent, if rainfall pattern in the intervening catchment differs from that in the catchment of the upstream station
- The double mass curves are used in this example primarily to examine the algebraic sums of flows at a downstream site with respect to the sums of flows at the upstream gauge sites

Double Mass Curve

Observations from double mass curve :

- The double mass curve for Manot gauge site indicates that the Manot flows are significantly higher than the flows at upstream gauge site
- The double mass curve for Mandla town gauge site indicates a change around June 1993
- The double mass curve for Bijore gauge site indicates that the flows are significantly higher than the aggregate flows at the upstream sites, implying high intermediate catchment flow
- The double mass curve for Jamtara indicates a break in slope in the year 1993

- (c) Comparison of specific flows:
- For comparison, gauge sites are put in four different groups based on the range of annual specific flows
- annual specific flows of a downstream gauge site are compared with the those obtained for the surrounding upstream gauge sites

			-		
	Annual average specific flow range (MCum/ sq.km)	Gauge site	Annual average specific flow (MCum/ sq.km)		
	<u> </u>	Kogaon	0.2756		
	0.2 to 0.3	Ajandiman	0.2559		
		Bagratawa	0.2994		
		Garudeshwar	0.3670		
	0.3 to 0.4	Patan	0.3895		
	0.3 10 0.4	Tikola	0.3974		
		Chandwada	0.3044		
		Sandia	0.4247		
		Handia	0.4684		
		Mortakka	0.4659		
		Mandleshwar	0.4565		
		Rajghat	0.4349		
		Mohegaon	0.4758		
	0.4 to 0.5	Hridayanagar	0.4598		
	0.4 10 0.5	Maheshwar	0.4984		
		Bareli	0.4760		
		Ginnore	0.4380		
		Sandalpur	0.4096		
		Barmanghat	0.4779		
		Balkheri	0.4789		
		Barman	0.4364		
		Dindori	0.5460		
		Bijore	0.5984		
		Jamtara	0.5350		
	0.5 to 0.7	Hoshangabad	0.5148		
		Gadarwara	0.5749		
		Chhidgaon	0.5824		
		Manot	0.6519		

Consistency of Specific Flows in Intervening Catchments: Let specific flows at stations A and B be S_A and S_B , catchment areas C_A and C_B resp.

> Flow at $A = C_A S_A$ Flow at $B = C_B S_B$

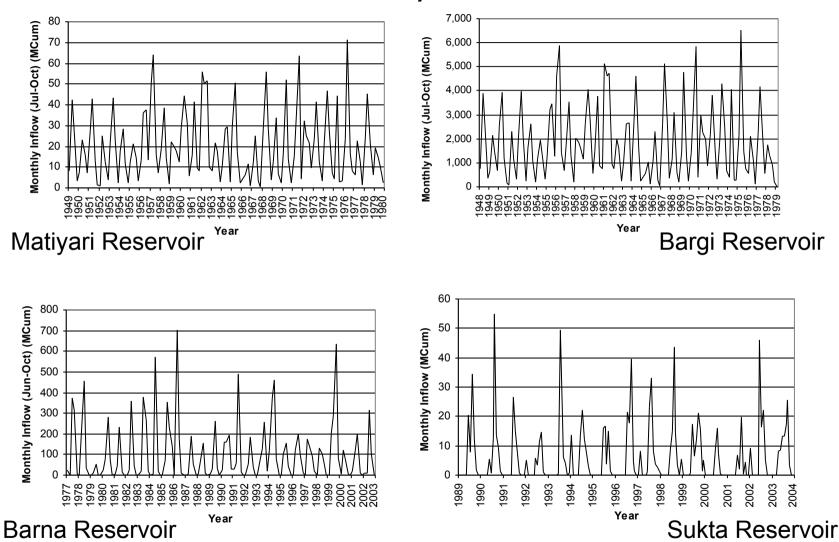
flow from intervening catchment bet. A and B = $C_B S_B - C_A S_A$ specific flow in the intervening catchment = $\frac{(C_B S_B - C_A S_A)}{(C_B - C_A)}$

Intervening Catchment Specific Flow Comparisons

S.No.	Description	Gauge site	Annual average sp. flow (MCum/ sq.km)	Catchmen t area (sq.km)	Remarks
	<u>Dindori-Manot</u>				
	Upstream site	Dindori	0.5460	2,292.00	Either contributions from
1	Downstream site	Manot	0.6519	4,667.00	controlled flows, or a higher
	Intervening				rainfall in the intervening
	Catchment				catchment; Otherwise
	= (Manot-Dindori)		0.7541	2,375.00	inconsistency is indicated.
	<u>Manot-Bijore</u>				
	Upstream site	Manot	0.6519	4,667.00	
2	Downstream site	Bijore	0.5984	14,561.00	
	Intervening				
	Catchment				
	= (Bijore-Manot)		0.5732	9,894.00	
	<u>Bijore-Jamtara</u>				
3	Upstream site	Bijore	0.5984	14,561.00	Either significant utilisation or
	Downstream site	Jamtara			lower rainfall in the catchment
	Intervening				above Jamtara, or both.
	Catchment				Otherwise, inconsistency is
	= (Jamtara-Bijore)		0.1794	2,596.00	indicated

Observations:

- The specific flow in the intermediate catchment between Dindori and Manot is 0.7541, compared to 0.546 at Dindori.
- This can happen if rainfall between Dindori and Manot is much larger than that above Dindori, or there is a contribution from controlled flows in the intervening catchment (or a combination of both).
- Otherwise, inconsistency is indicated

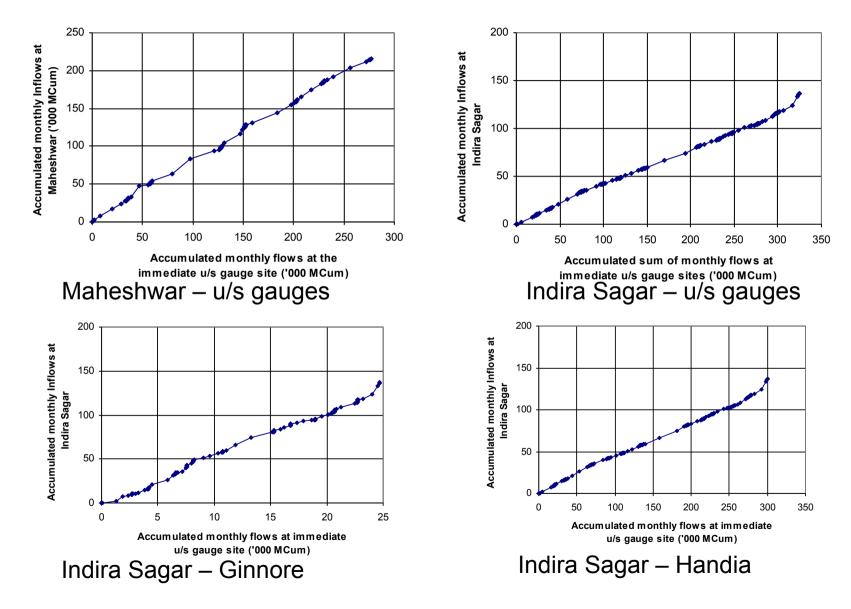

Reservoir inflow:

Reservoirs considered
in simulation studies

S.N o.	Reservoir	Data used (period)	Type of data	
1	Banjar	1981-2002	Daily	
2	Matiyari	1949-1979	Monthly	
3	Bargi	1948-1978	Monthly	
4	Dukrikheda	1990-2004	Daily	
5	Barna	1977-2002	Monthly	
6	Tawa	1948-1993	Monthly	
7	Kolar	1991-2000	Monthly	
8	Sukta	1989-2003	Daily	
9	Indira sagar	1988-2002	Monthly	
10	Omkareshwar	-	-	
11	Maheshwar	1950-1977	Monthly	
12	Satak	-	-	
13	Jobat	1961-1980	Monthly	
14	Sardar sarovar	Flows at Garudesh war will be used	Daily	

Statistics of Annual Inflows

	Gauge site	Data used (Period)	Duratio n (years)	Annual Average (MCum)	Maximu m (MCum)	Minimum (MCum)	Standard deviation (MCum)	
1	Matiyari*	1949-1979	31	80.43	168.17	23.43	32.25	40.10
2	Bargi*	1948-1978	31	7,392.65	15,430.00	2,152.00	2,957.96	40.01
3	Barna#	1977-2002	26	500.12	1,208.03	67.14	269.11	53.81
4	Tawa	1948-1993	46	3,768.41	9,444.75	1,787.68	1,721.83	45.69
5	Kolar	1991-2000	10	219.09	470.17	78.34	119.71	54.64
6	Sukta	1989-2003	15	71.03	98.81	32.95	22.82	32.13
7	Indira Sagar⁺	1988-2002	15	10,594.85	23,737.80	4,036.20	5,854.42	55.26
8	Mahesh war	1950-1977	28	27,822.55	56,125.10	11,298.90	9,454.72	33.98
9	Jobat [#]	1961-1980	20	299.49	807.10	39.20	203.16	67.84
10	Sardar	Flows at Garudeshwa r will be used	-	-	-	-	-	-



Monthly Inflows

Consistency of Reservoir Inflow Data :

- Similar to the gauge discharge data, consistency checks are performed for the reservoir inflow data.
- Double mass curves for inflows are prepared
- The double mass curves do not indicate any obvious inconsistency in the data

Double mass curves for inflows

