

STOCHASTIC HYDROLOGY

Lecture -36 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

Summary of the previous lecture

- Multivariate stochastic models
 - Matalas model

 $X_{t+1} = AX_t + B\mathcal{E}_{t+1}$

where

 X_t and X_{t+1} are p x 1 vectors representing standardized data corresponding to p sites at time steps t and t+1 resp ε_{t+1} is N(0,1); p x 1 vector with ε_{t+1} independent of X_t . A and B are coefficient matrices of size p x p. B is assumed to be lower triangular matrix

$$A = M_1 M_0^{-1}$$

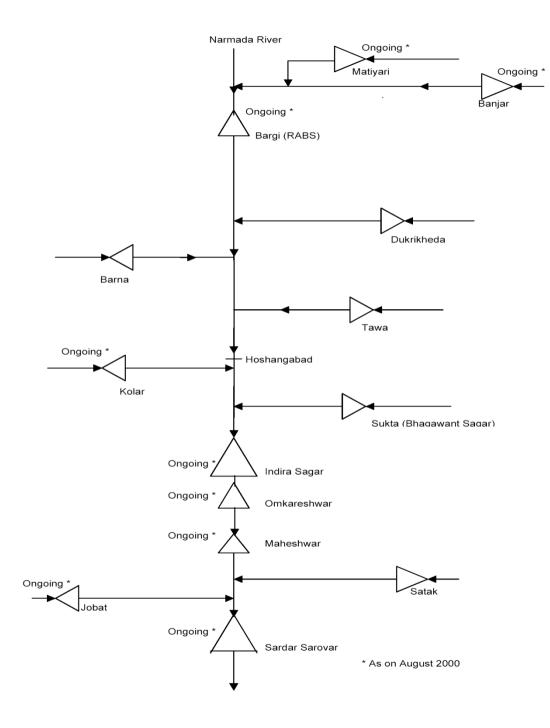
 $BB' = M_0 - M_1 M_0^{-1} M_1'$

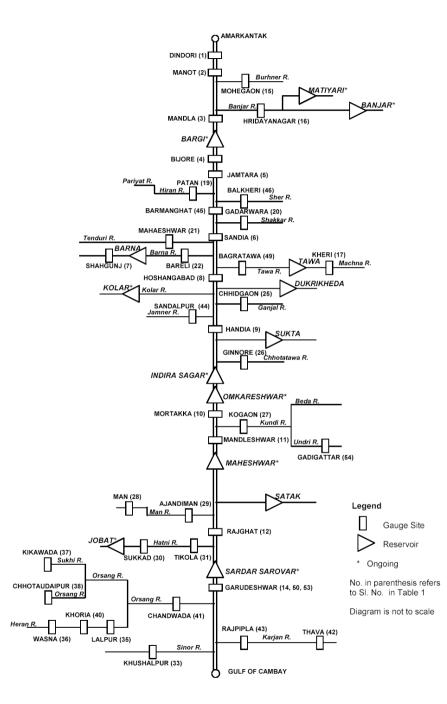
 M_0 is the cross-correlation matrix (size pxp) of lag zero

 M_I is the cross-correlation matrix (size pxp) of lag one

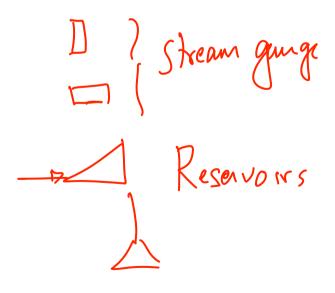
DATA CONSISTENCY CHECKS

- (a) Consistency of flow data at a gauge site with the sum of flows from immediate upstream gauges,
- (b) Consistency of flow data with respect to specific flows,
- (c) Consistency of flow data with the flow data at an immediate neighboring (upstream) station, and
- (d) Consistency of the reservoir inflow data where available, with the data from the surrounding gauge sites


- Continuous data to be available for checking consistency.
- Missing data to be filled in before checking the consistency.


Missing data for an example basin:

- The basin is predominantly monsoon driven.
- Flow patterns in the monsoon and non-monsoon seasons are different.
- Different procedures adopted for filling-up the discharge data for the two seasons


Data availability for the basin:

- Daily stream discharge data at 55 gauge sites available.
- Gauge sites at which short length of data (of less than 5 years) is available, are discarded from the analyses.
- 30 gauge sites are selected based on the length of data availability and location.

Line Diagram of the Basin Showing the Location of Stream Gauge Sites and Reservoirs

Monsoon Period (Months: May-September):

Number of years for which data is available is greater than or equal to 12

Step-1:

 Replace the missing data by average value for that day, computed from years in which data is available for the particular day.

Ex: Discharge data for June 20th in a year is missing; Compute the average discharge of June 20th from the data of other years for which the discharge data is available for June 20th, and fill up the missing data with this average value

Step-2:

 Plot the time series of daily flows and check whether there are any significant fluctuations in the hydrograph. If such a case is noticed, correct the filled up data to smoothen the hydrograph.

Monsoon Period (Months: May-September):

Number of years for which data is in between 5 and 12

 If the missing data is non continuous (i.e., not more than 3 days continuously in a month), plot the daily flow time series for the month and join the curve smoothly to obtain the missing values

If the missing data is continuous (i.e., more than 3 days continuously in a month)

• Compute the proportion of monthly flow occurring in each day for which the data is missing.

For example, data for six days, June 20-25, 1998 is missing.

Data for all days in June is available for 7 years

From the June 20th data of each of the 7 years, compute the proportion of the June months flow, occurring on June 20th. There will be seven such values.

Similarly compute these 7 proportions for June 21st, ..., 25th also

 Compute the average of these proportions for each day of missing data

• Use this average proportion on the average of the month to fill the data for that day

In the example above, let the average of June flow computed based on 7 years data = 12.6 cumecs Average proportion for June $20^{th} = 0.02$ Then, the data for June 20^{th} 1998 is filled-up as 0.02 * 12.6 = 0.252 cumecs

• Similarly fill-up the data for other days in that month.

Non-monsoon Period (Months: January-April and October-December):

•Compute the probability that the flow is non-zero for that day. (Clarke, 1973)

Ex: Day - Oct.20th; Number of years of data available = 7

Number of non-zero flows on Oct. 20th in the 6 years (leaving out the year in which the data is being filled) = 2 (i.e., only 2 out of these 6 years have a non-zero flow. Remaining 4 years have a zero flow)

Clarke, R.T. (1973), Mathematical Models in Hydrology, FAO Irrigation and Drainage Paper no. 19, Rome, Italy.

Probability that a non-zero flow occurs on Oct. $20^{\text{th}} = 2/6 = 0.333$

 Generate a uniform random number between 0 and 1

e.g., for the Oct. 20th missing data in (a) above, let this random number be 0.248

- If the random number is less than the probability of non-zero flow for that day then it is assumed that a non-zero flow will occur for that day and the missing data is replaced with the average value for that day; Otherwise, the flow for that day is taken as zero
- In the example above, the probability of non-zero flows = 0.333

Random number = 0.248

Since 0.248 < 0.333, non-zero flow occurs.

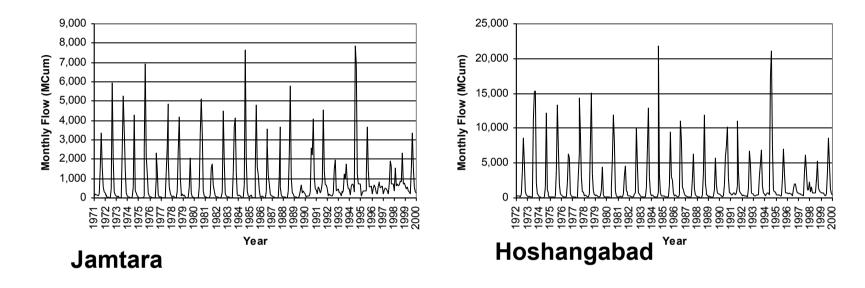
Number of years in which the flow is non-zero = 2

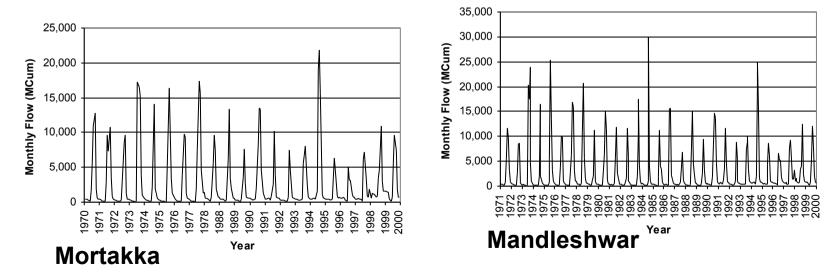
Average flow on Oct. 20th based on these two years of flow = 2.87 cumecs

Statistical Analysis of Discharge Data:

- Statistical analysis of discharge data is performed on the data from the selected 30 gauge sites.
- Analyses is conducted over a minimum of 12 years data starting from 1970
- The Garudeshwar data considered is only for 7 years, from 1970-1976

Statistics of Annual Flows


S.No	Gauge site	Data used (Period)	Duratio n (years)	Average (MCum)	Maximum daily flow (cumec)	Maximum (MCum)	Minimum (MCum)	Standard deviation (MCum)	Coeff. of variatio n (%)
1	Dindori	1988-1999	12	1,251.50	2,624.00	2,519.00	760.19	438.13	35
2	Manot	1976-1999	24	3,042.13	6,180.00	5,427.17	1,012.56	988.13	32
3	Mandla Town	1977-1980 1993-1995	7	4,588.07	8,409.71	14,336.93	690.92	4,594.22	100
4	Bijore	1988-1999	12	8,713.39	20,349.00	16,473.11	2,870.88	4,168.42	48
5	Jamtara	1971-1999	29	9,179.34	21,355.10	20,985.05	2,371.81	3,706.08	40
6	Sandia	1978-1999	22	14,419.68	18,160.00	37,623.47	6,066.00	6,744.77	47
7	Hoshangabad	1972-1999	28	22,932.10	31,600.00	53,146.10	8,052.22	10,279.85	45
8	Handia	1977-1999	23	25,304.99	26,240.00	60,253.63	11,415.29	10,615.42	42
9	Mortakka	1970-1978 1988-1999	21	31,300.49	59,371.49	62,923.09	16,158.82	13,087.86	42
10	Mandleshwar	1971-1999	29	33,239.03	100,096.80	69,615.62	15,226.93	13,600.32	41
11	Rajghat	1971-1999	29	33,777.94	56,601.30	74,077.80	14,951.77	13,858.23	41
12	Garudeshwar	1971-1975 1980-1999	25	32,254.93	53,749.00	74,077.70	15,513.25	14,016.17	43
13	Mohegaon	1977-1999	23	2,199.34	6,526.90	4,240.24	646.21	791.37	36
14	Hridayanagar	1976-1999	24	1,549.61	3,632.00	4,756.16	544.39	891.54	58
15	Patan	1979-1999	21	1,538.53	1,817.00	3,552.23	497.55	788.92	51


Statistics of Annual Flows (contd.)

S.No	Gauge site	Data used (Period)	Duratio n (years)	Average (MCum)	Maximum daily flow (cumec)	Maximum (MCum)	Minimum (MCum)	Standard deviation (MCum)	Coeff. of variatio n (%)
16	Gadarwara	1977-1999	23	1,304.96	3,080.80	3,016.02	459.23	646.76	50
17	Maheshwar	1985-1993 1996-2000	14	745.17	1,786.00	1,364.76	263.88	299.20	40
18	Bareli	1985-1993 1998-2000	12	756.89	2,964.42	3,749.21	47.10	1,032.01	136
19	Chhidgaon	1976-1999	24	1,007.02	4,460.00	2,187.60	249.97	502.53	50
20	Ginnore	1971-1999	29	2,109.27	12,157.80	4,525.83	553.87	989.50	47
21	Kogaon	1978-1999	22	1,090.14	4,555.00	2,296.16	164.53	660.65	61
22	Ajandiman	1985-1993 1996-2000	14	255.10	1,149.00	625.33	40.74	183.67	72
23	Tikola	1985-1993 1996-1999	13	532.10	1,398.41	1,738.49	61.34	554.75	104
24	Chandwada	1979-1999	21	1,455.58	7,823.80	4,082.33	149.28	1,097.90	75
25	Sandalpur	1987-1993 1996-2000	12	226.10	779.10	423.89	47.77	133.09	59
26	Barmanghat	1988-1999	12	12,642.86	16,283.00	28,749.00	4,052.33	6,120.13	48
27	Balkheri	1977-1999	23	722.18	4,961.10	1,639.75	211.29	350.74	49
28	Barman	1970-1988 1991-1995	24	11,593.41	20,658.20	27,743.94	4,422.63	5,235.99	45
29	Bagratawa	1976-1991	16	1,801.80	9,584.20	5,329.54	61.24	1,383.53	77
1 30	Gurudeshwar A.M	1970-1976	7	46,756.48	61,000.00	76,885.33	28,104.76	15,774.09	34

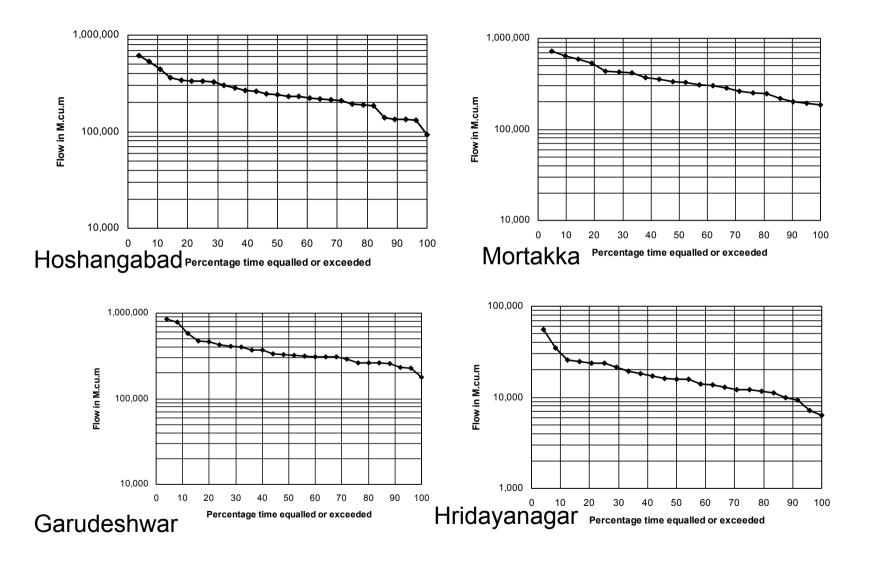
Statistical Analysis of Discharge Data:

- The coefficient variation is more than 100% for the gauge sites, Mandla town, Bareli and Tikola, indicating a high variation of flows
- Similar statistics are computed for monthly flow data
- In non-monsoon months a large variation is indicated
- As the flow magnitudes are small in the nonmonsoon months, the large variation is not of much practical significance

Specific flows:

- The specific flow is expressed as flow volume per unit area of the catchment
- Represents the catchment response to precipitation
- If a number of gauge stations are located in the same hydroclimatic region with similar land use patterns, then the specific flows computed with data at the gauge stations must be comparable
- Annual specific flows are computed as the ratio of average annual flow to catchment area

- This statistic is useful in comparing the runoff per unit area from different sub-catchments within the basin
- The specific flow is computed in MCum/sq.km; a measure of the annual average runoff in meters
- The average annual rainfall in the basin varies from around 700 mm to around 1650 mm


Annual and Seasonal Specific Flows for Gauge Sites

S.No.	Gauge site	Catch-ment area (sq. km)	Data used (period)	Duration (years)	Annual specific flows (MCum per sq. km)	Seasonal specific flows (MCum per sq. km)
1	Dindori	2,292.00	1988-1999	12	0.5460	0.4881
2	Manot*	4,667.00	1976-1999	24	0.6519	0.6113
3	Mandla Town	Not available	1977-1980 1993-1995	7	NA	NA
4	Bijore	14,561.00	1988-1999	12	0.5984	0.4361
5	Jamtara	17,157.00	1971-1999	29	0.5350	0.4569
6	Sandia	33,953.50	1978-1999	22	0.4247	0.3569
7	Hoshangabad	44,543.00	1972-1999	28	0.5148	0.4577
8	Handia	54,027.00	1977-1999	23	0.4684	0.4116
9	Mortakka	67,184.00	1970-1978 1988-1999	21	0.4659	0.4145
10	Mandleshwar	72,809.30	1971-1999	29	0.4565	0.4132
11	Rajghat	77,674.10	1971-1999	29	0.4349	0.3943
12	Garudeshwar	87,892.00	1971-1975 1980-1999	25	0.3670	0.3278
13	Mohegaon	4,622.00	1977-1999	23	0.4758	0.4506
14	Hridayanagar	3,370.00	1976-1999	24	0.4598	0.4411
15	Patan	3,950.00	1979-1999	21	0.3895	0.3563

Annual and Seasonal Specific Flows for Gauge Sites

S.No.	Gauge site	Catch-ment area (sq. km)	Data used (period)	Duration (years)	Annual specific flows (MCum per sq. km)	flows	cific sq.
16	Gadarwara	2,270.00	1977-1999	23	0.5749	0.5373	
17	Maheshwar	1,495.00	1985-1993 1996-2000	14	0.4984	0.4269	
18	Bareli	1,590.00	1985-1993 1998-2000	12	0.4760	0.4109	
19	Chhidgaon	1,729.00	1976-1999	24	0.5824	0.5548	
20	Ginnore	4,815.70	1979-1999	29	0.4380	0.4246	
21	Kogaon	3,955.00	1978-1999	22	0.2756	0.2652	
22	Ajandiman	997.00	1985-1993 1996-2000	14	0.2559	0.2455	
23	Tikola	1,339.00	1985-1993 1996-1999	13	0.3974	0.3355	
24	Chandwada	4,782.00	1979-1999	21	0.3044	0.3017	
25	Sandalpur	552.00	1987-1993 1996-2000	12	0.4096	0.3692	
26	Barmanghat	26,453.00	1988-1999	12	0.4779	0.3731	
27	Balkheri	1,508.00	1977-1999	23	0.4789	0.4601	
28	Barman	26,563.00	1970-1988 1991-1995	24	0.4364	0.3991	
29	Bagratawa	6,018.00	1976-1991	16	0.2994	0.2910	
30	Garudeshwar A.M	Not available	1970-1976	7	NA	NA	

Flow duration curves

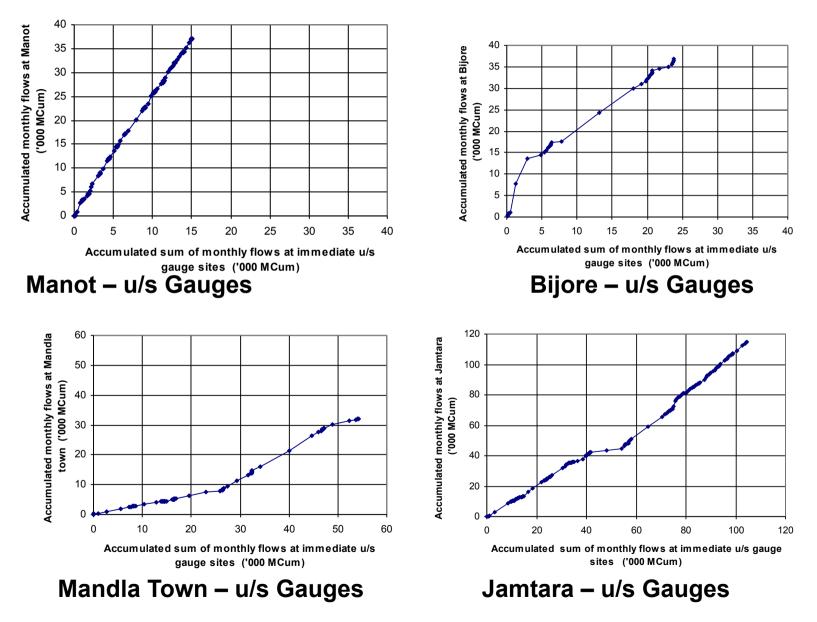
Consistency Checks for the basin:

- (a) The sums of daily discharges (to get monthly values) as given with respect to the sums computed from the data.
- (b) Consistency of flow data at a gauge site with the sum of flows from immediate upstream gauges,
- (c) Consistency of flow data with respect to specific flows,
- (d) Consistency of flow data with the flow data at an immediate neighboring (upstream) station, and
- (e) Consistency of the reservoir inflow data where available, with the data from the surrounding gauge sites

(a) Mismatch of algebraic sums of daily flows:

- Daily discharge data as supplied are keyed in and the monthly flows are computed by summing the daily discharges
- The computed monthly flows are compared with the corresponding totals in the hard copies of the records
- high mismatches (of more than about 15%) occur mostly in the non-monsoon periods
- high mismatches occur during the monsoon periods for Hoshangabad, Barman, Handia, Mandleshwar and Ajandiman

(b) Homogeneity and consistency with respect to immediate upstream gauges :


- For checking the homogeneity of data at a site with respect to the data from upstream gauges, the double mass curve approach is used
- A double mass curve is plotted between accumulated monthly flows at the site being examined and the corresponding accumulated sum of monthly flows at immediate upstream gauge sites

- If the net runoff in the intervening catchment (accounting for utilization) is added to the outflow at the upstream station/s, it should equal the flow at the downstream station.
- The double mass curve analysis is mainly useful in assessing whether the data at a given station is inhomogeneous

i.e., whether data at the station has been affected due to circumstances like change in the method of measurement, shift in location etc., provided that the other stations are not so affected

- The double mass curve does not directly indicate whether data at one station is hydrologically consistent with that at one or more upstream stations
- A nonlinear double mass curve can occur even when data at the two stations are consistent, if rainfall pattern in the intervening catchment differs from that in the catchment of the upstream station
- the double mass curves are used in this study primarily to examine the algebraic sums of flows at a downstream site with respect to the sums of flows at the upstream gauge sites

Double Mass Curve

Few observations from double mass curve :

- The double mass curve for Manot gauge site indicates that the Manot flows are significantly higher than the flows at upstream gauge site
- The double mass curve for Mandla town gauge site indicates a change around June 1993
- The double mass curve for Bijore gauge site indicates that the flows are significantly higher than the aggregate flows at the upstream sites, implying high intermediate catchment flow
- The double mass curve for Jamtara indicates a break in slope in the year 1993

- (c) Comparison of specific flows:
- For comparison, gauge sites are put in four different groups based on the range of annual specific flows
- annual specific flows of a downstream gauge site are compared with the those obtained for the surrounding upstream gauge sites

Annual average specific flow range (MCum/ sq.km)	Gauge site	Annual average specific flow (MCum/ sq.km)
_	Kogaon	0.2756
0.2 to 0.3	Ajandiman	0.2559
	Bagratawa	0.2994
	Garudeshwar	0.3670
0.010.01	Patan	0.3895
0.3 to 0.4	Tikola	0.3974
	Chandwada	0.3044
	Sandia	0.4247
	Handia	0.4684
	Mortakka	0.4659
	Mandleshwar	0.4565
	Rajghat	0.4349
	Mohegaon	0.4758
0.445.0.5	Hridayanagar	0.4598
0.4 to 0.5	Maheshwar	0.4984
	Bareli	0.4760
	Ginnore	0.4380
	Sandalpur	0.4096
	Barmanghat	0.4779
	Balkheri	0.4789
	Barman	0.4364
	Dindori	0.5460
	Bijore	0.5984
	Jamtara	0.5350
0.5 to 0.7	Hoshangabad	0.5148
	Gadarwara	0.5749
	Chhidgaon	0.5824
	Manot	0.6519

Consistency of Specific Flows in Intervening Catchments: Let specific flows at stations A and B be S_A and S_B , catchment areas C_A and C_B resp.

> Flow at $A = C_A S_A$ Flow at $B = C_B S_B$

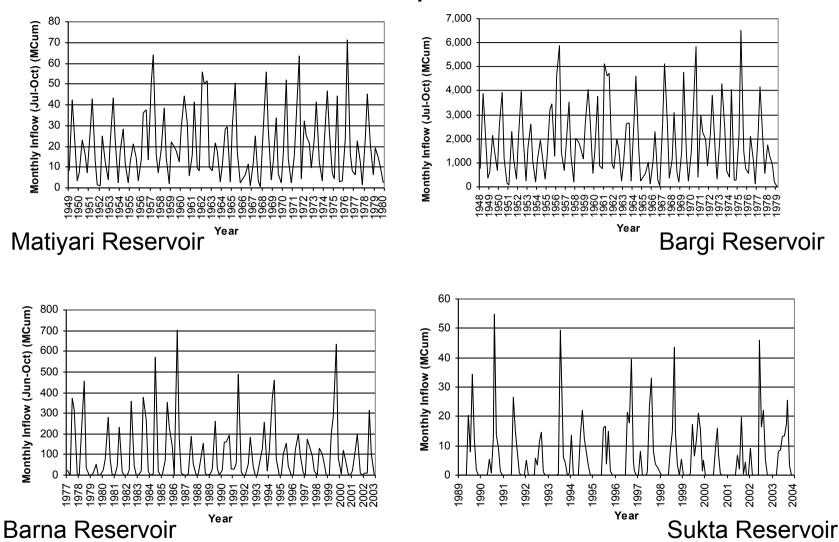
flow from intervening catchment bet. A and B = $C_B S_B - C_A S_A$ specific flow in the intervening catchment = $\frac{(C_B S_B - C_A S_A)}{(C_B - C_A)}$

Intervening Catchment Specific Flow Comparisons

S.No.	Description	Gauge site	Annual average sp. flow (MCum/ sq.km)	Catchmen t area (sq.km)	Remarks
	<u>Dindori-Manot</u>				
	Upstream site	Dindori	0.5460	2,292.00	Either contributions from
1	Downstream site	Manot	0.6519	4,667.00	controlled flows, or a higher
'	Intervening				rainfall in the intervening
	Catchment				catchment; Otherwise
	<u>= (Manot-Dindori)</u>		0.7541	2,375.00	inconsistency is indicated.
	<u>Manot-Bijore</u>				
	Upstream site	Manot	0.6519	4,667.00	
2	Downstream site	Bijore	0.5984	14,561.00	
	Intervening				
	Catchment				
	= (Bijore-Manot)		0.5732	9,894.00	
	<u>Bijore-Jamtara</u>				
	Upstream site	Bijore	0.5984	14,561.00	Either significant utilisation or
3	Downstream site	Jamtara			lower rainfall in the catchment
	Intervening				above Jamtara, or both.
	Catchment				Otherwise, inconsistency is
	= (Jamtara-Bijore)		0.1794	2,596.00	indicated

Few observations :

- The specific flow in the intermediate catchment between Dindori and Manot is 0.7541, compared to 0.546 at Dindori.
- This can happen if rainfall between Dindori and Manot is much larger than that above Dindori, or there is a contribution from controlled flows in the intervening catchment (or a combination of both).
- Otherwise, inconsistency is indicated

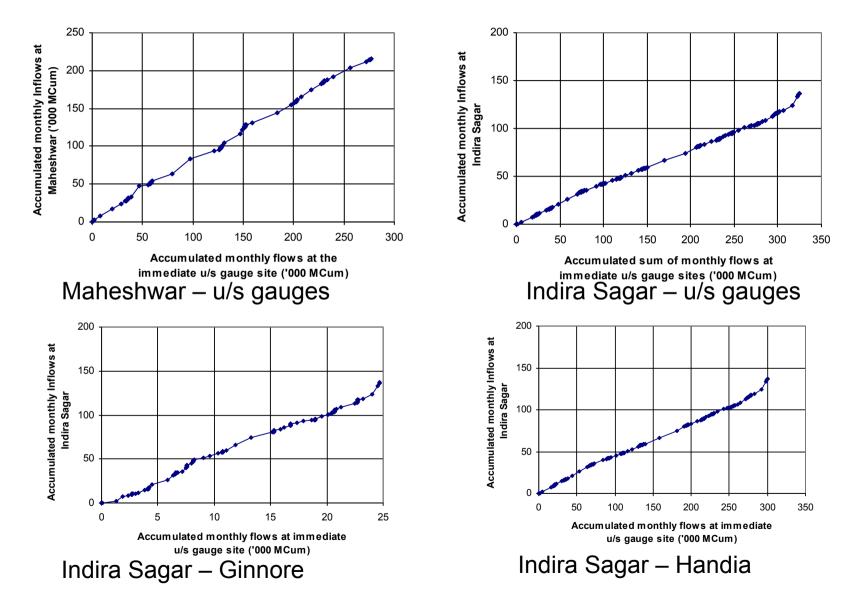

Reservoir inflow:

• Reservoirs considered in simulation studies

S.N o.	Reservoir	Data used (period)	Type of data
1	Banjar	1981-2002	Daily
2	Matiyari	1949-1979	Monthly
3	Bargi	1948-1978	Monthly
4	Dukrikheda	1990-2004	Daily
5	Barna	1977-2002	Monthly
6	Tawa	1948-1993	Monthly
7	Kolar	1991-2000	Monthly
8	Sukta	1989-2003	Daily
9	Indira sagar	1988-2002	Monthly
10	Omkareshwar	-	-
11	Maheshwar	1950-1977	Monthly
12	Satak	-	-
13	Jobat	1961-1980	Monthly
14	Sardar sarovar	Flows at Garudesh war will be used	Daily

Statistics of Annual Inflows

	Gauge site	Data used (Period)	Duratio n (years)	Annual Average (MCum)	Maximu m (MCum)	Minimum (MCum)	Standard deviation (MCum)	
1	Matiyari*	1949-1979	31	80.43	168.17	23.43	32.25	40.10
2	Bargi*	1948-1978	31	7,392.65	15,430.00	2,152.00	2,957.96	40.01
3	Barna#	1977-2002	26	500.12	1,208.03	67.14	269.11	53.81
4	Tawa	1948-1993	46	3,768.41	9,444.75	1,787.68	1,721.83	45.69
5	Kolar	1991-2000	10	219.09	470.17	78.34	119.71	54.64
6	Sukta	1989-2003	15	71.03	98.81	32.95	22.82	32.13
7	Indira Sagar⁺	1988-2002	15	10,594.85	23,737.80	4,036.20	5,854.42	55.26
8	Mahesh war	1950-1977	28	27,822.55	56,125.10	11,298.90	9,454.72	33.98
9	Jobat [#]	1961-1980	20	299.49	807.10	39.20	203.16	67.84
10	Sardar	Flows at Garudeshwa r will be used	-	-	-	-	-	-



Monthly Inflows

Consistency of Reservoir Inflow Data :

- Similar to the gauge discharge data, consistency checks are performed for the reservoir inflow data.
- Double mass curves for inflows are prepared
- The double mass curves do not indicate any obvious inconsistency in the data

Double mass curves for inflows

