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Summary	  of	  the	  previous	  lecture	  

•  Regression on Principal components 
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MULTIVARIATE 
STOCHASTIC MODELS 
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•  Stochastic models discussed for single site in 
relation with the auto correlations and auto 
covariance. 
–  Thomas Fiering models 

•  Stationary and non-stationary models 
–  ARMA models 

•  Box Jenkins models 

Multivariate Stochastic models 
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First order Markov process: 
    
     Xt+1 = µx +ρ1 (Xt – µx ) + εt+1 
  
 
ε ∼ Mean 0 and variance σε2 
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Deterministic component 

Random component 

( ) 2
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First order Markov model with non-stationarity, for 
stream flow generation: 

ρj  is serial correlation between flows of jth month 
and j+1th month.  
ti, j+1 ∼ N(0, 1) 
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ARMA (p, q) 
 
Xt = φ1Xt-1 + φ2Xt-2+…+ φpXt-p + θ1et-1 + θ2et-2 +…+ θqet-q    
                                                                                 + et 
 
 

{et} is the residual series 
Assumptions : {et} has zero mean with uncorrelated terms 
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AR of order ‘p’ 

Residuals of order ‘q’ 

ARIMA Models 
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•  Data generation (or forecasting) on a random 
variate depending on two or more sites is usually 
required. 
–  For example, in the design of a reservoir, the flow 

from all the streams fed to the reservoir must be 
considered. 

•  If the time series for the random variables are 
independent, then the generation techniques for 
single site can be used. 

•  When they are not independent, it is important to 
consider the simultaneous behavior of the random 
variables. 
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•  Correlation of a random variable between two sites 
is cross-correlation. 

•  Lag zero cross-correlation is the correlation of a 
random variable at two points in the same time 
period. 

•  Lag k cross-correlation, rj,h (k) is the correlation 
between random variable at site j with the random 
variable at site h, with lag time k. 
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where 
n is the total number of pairs of observations on Xj 
and Xk, 
xj,i is the ith observation on Xj 

           are the mean and standard deviation of the 
observations on Xj             
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Obtain the lag one cross correlation of annual rainfall 
data in mm at two sites A and B. 
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Example – 1 

Year 1 2 3 4 5 6 7 8 9 10 
Annual rainfall at 

site A (mm) 5496 7797 7392 7061 6564 5919 5053 3951 4280 5910 

Annual rainfall at 
site B (mm) 5713 6934 6275 6641 6675 5605 5144 5116 4722 6869 

Year 11 12 13 14 15 16 17 18 19 
Annual rainfall at 

site A (mm) 5145 6384 5679 6021 6733 8151 4151 4200 6704 

Annual rainfall at 
site B (mm) 5226 7313 6068 5876 6044 8384 5149 5359 6197 



 
 
 
 
 
 
lag one cross correlation of sites A and B is given by 
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Example – 1 (Contd.) 
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Site A B 

Mean 5926 6069 

Std.dev. 1250.1 914.9 



13	  

S.No. 
(i) 

Annual 
rainfall at A 

Annual 
rainfall at B 

1 5496 5713 -430 
2 7797 6934 1871 865 -371836 
3 7392 6275 1466 206 385557 
4 7061 6641 1135 572 838719.5 
5 6564 6675 638 606 687965.4 
6 5919 5605 -7 -464 -296072 
7 5053 5144 -873 -925 6328.587 
8 3951 5116 -1975 -953 831772.6 
9 4280 4722 -1646 -1347 2660008 

10 5910 6869 -16 800 -1316760 
11 5145 5226 -781 -843 13354.06 
12 6384 7313 458 1244 -971409 
13 5679 6068 -247 -0.95 -434.044 
14 6021 5876 95 -193 47627.53 
15 6733 6044 807 -25 -2373.94 
16 8151 8384 2225 2315 1868613 
17 4151 5149 -1775 -920 -2047028 
18 4200 5359 -1726 -710 1260044 
19 6704 6197 128 -220999 

3373079 
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Example – 1 (Contd.) 
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Multisite Markov model (Two sites): 
•  Model preserves mean, variance, skewness, lag 

one serial correlation and lag zero cross-correlation 
(Haan 1977). 

•  One site is to be selected as key site. 
•  Selection may be based on the length of the data 

and the quality of the record. 
•  Consider j as the key site and h as the subordinate 

site to key site j. 
•  A sequence of observations is generated for site j 

using single site generation technique. 
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Ref.: Haan, C.T. (1977) Statistical methods in Hydrology, Iowa State University Press 



•  A cross-correlation model is used to generate values 
of site h based on generated values at site j. 
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First order Markov model with non-stationarity 
(single site) 

i is year j is month in this model 

j and h refer to two sites, in this model 



 
 
 
 
 
tt is a standardized random variate 
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where 
ut is a standardized random variate adjusted to 
incorporate the serial correlation at site h. 



Multisite Markov model: 
•  Multisite generation requires simultaneous 

generation of data at several sites while preserving 
the correlation between the data at various sites. 

•  Consider xj,t 
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•  The first order Markov model for site h is 

•  The first order Markov model for site j is 

•  The equations are written in matrix form 
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( ) ( )2
, 1 , , 11 1 1h t h h t h t hx xρ ε ρ+ += + −

( ) ( )2
, 1 , , 11 1 1j t j j t j t jx xρ ε ρ+ += + −

( ) 2
1 1 1 11t x t x t xX X uµ ρ µ σ ρ+ += + − + −

µ= 0 and σ =1 because it is standardized data 



 
 
where 
Xt is a p x 1 vector of standardized values of the 

variable generated at time t, 
E is a p x p diagonal matrix whose jth diagonal element 

is ρj(1), 
G is a p x p diagonal matrix whose jth diagonal element 

is 

ε is a p x 1 vector of random variates   
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1t tX EX Gε+ = +
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•  ε is defined to preserve the first order serial 
correlation (auto correlation) of the xj‘s and the lag 
zero cross-correlation between xj and xh . 

•  ε is made of elements that are εj,t+1; each εj,t+1 is 
independent of xj,t ; εj is N(0,1) 

•  The cross correlation between εj and εh is ρ*j,h(0), 

•  ρ*j,h(0) reproduces the desired ρj,h(0), which is the 
lag zero cross correlation between xj and xh . 
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where 
       is a p x p diagonal matrix whose jth diagonal 

element is the square root of the jth largest 
eigenvalue of the p x p correlation matrix whose 
elements are ρ*j,h(0)  

A is a p x p matrix consisting of eigenvectors of 
correlation matrix, 

e is p x 1 vector of independent observations from N
(0,1) 
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•  Matalas (1967) has given a multisite normal 
generation model that preserves the means, 
variances, lag one serial correlation, lag one cross-
correlations and lag zero cross-correlations. 

where 
Xt and Xt+1 are p x 1 vectors representing standardized 

data corresponding to p sites at time steps t and t+1 
resp. 
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1 1t t tX AX Bε+ += +

Ref.: Matalas, N.C. (1967) Mathematical assessment of synthetic hydrology, Water 
Resources Research 3(4):937-945 



εt+1 is a form of N(0,1) with εt+1 independent of Xt. 
A and B are coefficient matrices of size p x p. 
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•  The equation form is  

 
where 
ai,j and bi,j denote the (i , j)th elements of the matrices 

A and B. 
B is assumed to be lower triangular matrix. 
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Coefficient matrices A and B: 
•  The expectation of Xt Xt

’ is denoted by M0   

If m0(i , j) is a element of M0 matrix in the ith row and jth 
column,  
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i.e., m0(i , j) is correlation coefficient between the 
data at sites i and j at time t.  
Therefore  M0 is the cross-covariance matrix of lag 
zero 
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•  The expectation of Xt Xt-1
’ is denoted by M1   

If m1(i , j) is a element of M1 matrix in the ith row and jth 
column,  
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i.e., m1(i , j) represents lag one cross correlation 
between the data at sites i and j .  
Therefore  M1 is the cross-covariance matrix of lag 
one 
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Considering the model, 

Post multiplying with Xt
’ on both sides and taking the 

expectation,. 

Multivariate Stochastic models 

30	  

1 1t t tX AX Bε+ += +
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Post multiplying with Xt+1
’ on both sides and taking the 

expectation,. 
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Taking expectation on both sides, 
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Substituting in the equation, 
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•  B does not have a unique solution. 
•  One method is to assume B is a lower triangular 

matrix. 
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•  The diagonal elements of the B matrix are obtained 
as, 
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•  The elements in the kth row are obtained as, 
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•  If the model is to fit the data, the matrices M0 and 
BB’ should be positive definite. 

•  This condition is used to check the inconsistency in 
the data. 

•  Assumption is that the model is multivariate normal. 
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