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Summary	
  of	
  the	
  previous	
  lecture	
  

•  Case study -5: Sakleshpur rainfall data 
–  Plots of Time series, Correlogram, Partial 

Autocorrelation function and Power spectrum 
–  Candidate ARMA models  
–  Validation tests 

•  Summary of all the case studies 



MARKOV CHAINS 



 
•  A Markov chain is a stochastic process with the 

property that value of process Xt  at time t depends 
on its value at time t-1 and not on the sequence of 
other values (Xt-2 , Xt-3,……. X0) that the process 
passed through in arriving at Xt-1. 
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Markov Chains 

[ ] [ ]1 2 0 1, ,.....t t t t tP X X X X P X X− − −=

Single step Markov 
chain	
  



•  This conditional probability gives the probability that 
at time t, the process will be in state ‘j’, given that 
the process was in state ‘i’ at time t-1. 

•  The conditional probability is independent of the 
states occupied prior to t-1. 

•  For example, if Xt-1 is a dry day, we would be 
interested in the probability that Xt is a dry day or a 
wet day. 

•  This probability is commonly called as transition 
probability 
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Markov Chains 

1t j t iP X a X a−⎡ ⎤= =⎣ ⎦



•  Usually written as      indicating the transition of the 
process from state ai at time t-1 to aj at time t. 

•  If  Pt
ij is independent of time, then the Markov chain 

is said to be homogeneous. 
     
     i.e.,                      v    t and  τ 
 
 The transition probabilities remain same across 
time. 

6	
  

Markov Chains 

t
ijP

1
t

t j t i ijP X a X a P−⎡ ⎤= = =⎣ ⎦

t t
ij ijP P τ+=



Transition Probability Matrix(TPM): 
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Markov Chains 
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•  Elements in any row of TPM sum to unity  
•  TPM can be estimated from observed data by 

enumerating the number of times the observed 
data went from state ‘i’ to ‘j’ 

•  Pj 
(n) is the probability of being in state ‘j’ in time 

step ‘n’. 
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Markov Chains 
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•  pj
(0) is the probability of being in state ‘j’ in period     

t = 0. 

•  If p(0) is given and TPM is given 
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Markov Chains 
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Markov Chains 
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Therefore 
 
 
 
 
 
 
 

In general, 
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Markov Chains 
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•  As the process advances in time, pj
(n) becomes less 

dependent on p(0) 
•  The probability of being in state ‘j’ after a large 

number of time steps becomes independent of the 
initial state of the process. 

•  The process reaches a steady state at large n 

•  As the process reaches steady state, the 
probability vector remains constant 
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Markov Chains 

p p P= ×



Example – 1 
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Consider the TPM for a 2-state first order homogeneous 
Markov chain as  
 
 
 
 
State 1 is a non-rainy day and state 2 is a rainy day 
Obtain the  
1.  probability that day 1 is a non-rainy day given that day 0 is 

a rainy day  
2.  probability that day 2 is a rainy day given that day 0 is a 

non-rainy day  
3.  probability that day 100 is a rainy day given that day 0 is a 

non-rainy day 

0.7 0.3
0.4 0.6

TPM ⎡ ⎤
= ⎢ ⎥
⎣ ⎦



Example – 1 (contd.) 
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1.  probability that day 1 is a non-rainy day given that day 
0 is a rainy day  

The probability is 0.4 
 

2.  probability that day 2 is a rainy day given that day 0 is 
a non-rainy day 

p(1), in this case is [0.7 0.3] because it is given that 
day 0 is a non-rainy day.  

0.7 0.3
0.4 0.6

TPM ⎡ ⎤
= ⎢ ⎥

⎣ ⎦

No rain 

rain 

No rain rain 

( ) ( )2 1p p P= ×



Example – 1 (contd.) 
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   The probability is 0.39 
 

3.  probability that day 100 is a rainy day given that day 0 
is a non-rainy day  

( ) [ ]

[ ]

2 0.7 0.3
0.7 0.3

0.4 0.6

0.61 0.39

p ⎡ ⎤
= ⎢ ⎥

⎣ ⎦

=

( ) ( )0n np p P= ×



Example – 1 (contd.) 
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⎣ ⎦



Example – 1 (contd.) 
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Steady state probability 

    

[ ]

[ ]

0.5714 0.4286
0.5714 0.4286

0.5714 0.4286

0.5714 0.4286

np p P= ×

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

=

 
 
 
For steady state, 

[ ]0.5714 0.4286p =



Difficulties in using Markov chains in hydrology 
•  Determining the number of states to use. 
•  Determining the intervals of the variable under 

study to associate with each state. 
•  Assigning a number to the magnitude of an event 

once the state is determined. 
•  Estimating the large number of parameters 

involved in even a moderate size Markov chain 
model.  

•  Handling situations where some transitions are 
dependent on several previous time periods while 
others are dependent on only one prior time period. 
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Markov Chains 

Ref: Statistical methods in Hydrology by C.T.Haan, Iowa state university press 



MULTIPLE LINEAR 
REGRESSION 
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•  A variable (y) is dependent on many 
other independent variables, x1, x2, 
x3, x4 and so on. 

•  For example, the runoff from the 
water shed depends on many 
factors like rainfall, slope of 
catchment, area of catchment, 
moisture characteristics etc. 

Multiple Linear Regression 
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y 

x1 

x2 

x3 
x4 

•  Any model for predicting runoff should contain all 
these variables 



A general linear model of the form is 
             y = β1x1 + β2x2 + β3x3 +…….. + βpxp 

 
y is dependent variable, 
x1, x2, x3,……,xp are independent variables and 
β1, β2, β3,……, βp are unknown parameters 
 
•  ‘n’ observations are required on y with the 

corresponding ‘n’ observations on each of the ‘p’ 
independent variables. 

Multiple Linear Regression 
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•  ‘n’ equations are written for each observation as 
             y1 = β1x1,1 + β2x1,2 + …….. + βpx1,p 
             y2 = β1x2,1 + β2x2,2 + …….. + βpx2,p 
              . 
              . 
             yn = β1xn,1 + β2xn,2 + …….. + βpxn,p 
 
•  Solving ‘n’ equations for obtaining the ‘p’ 

parameters. 
•  ‘n’ must ne equal to or greater than ‘p’, in 

practice ‘n’ must be at least 3 to 4 times large as 
‘p’. 

Multiple Linear Regression 
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•  If yi is the ith observation on y and yi,j is the ith 
observation on the jth independent variable, the 
generalized form of the equations can be written as  

•  The equation can be written in matrix notation as 

Multiple Linear Regression 

23	
  

,
1

p

i j i j
j

y xβ
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( ) ( ) ( )1 1n n p pY X× × ×= × Β



1,1 1,2 1,3 1, 11

2,1 2,2 2,3 2, 22

3,1 33

,1 ,1 ,

. .
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. ..
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⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥

= ×⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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Multiple Linear Regression 

Y is an nx1 vector of observations on the dependent 
variable, X is an nxp matrix with n observations on 
each p independent variables, Β is a px1 vector of 
unknown parameters. 



•  To have an intercept term, it is assumed that xi,1=1 
for i=1 to n, therefore  β1 is the intercept 

•  The linear regression model discussed previously 
(y=ax+b)  is a special form of the multiple 
regression model with xi,1=1, xi,2=x, β1=a and β2=b 

•  The same methodology used for solving the 
parameters in simple linear regression is adopted 
here. i.e., the unknown parameters are estimated 
by minimizing the sum of square errors (ei) where 

Multiple Linear Regression 
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ˆi i ie y y= −



In matrix notation, 
 
 
 
The equation is differentiated with respect to      and 
equated to zero 
 
 
 
Multiplying with              on both the sides, 
 

Multiple Linear Regression 

26	
  

( ) ( )

2 '

'ˆ ˆ
ie E E

Y X Y X

=

= − Β − Β

∑

( )'

' '

ˆ0 2

ˆ

X Y X

X Y X X

= − − Β

= Β

Β̂

( ) 1'X X
−



•          is a pxp matrix and rank is p 
•            is made up of sum of squares and cross 

products of the independent variables and  
•  This matrix plays an important role in estimating 

Multiple Linear Regression 
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( ) ( )
( )

1 1' ' ' '

1' '

ˆ

ˆ

X Y X X X X X X

X Y X X

− −

−

= Β

= Β

( ) 1'X X
−

( )'X X
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( ) 1' 'ˆ X X X Y
−

Β =

or 



•  Suppose if no. of regression coefficients are 3, then          
matrix is as follows 

Multiple Linear Regression 
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⎡ ⎤
⎢ ⎥
⎢ ⎥
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⎢ ⎥
⎣ ⎦
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•  Assumption: An independent variable cannot be a 
perfect linear function of any other independent 
variable 

•  For the rank of          to be p, an independent 
variable cannot be linearly dependent on any linear 
function of the remaining independent variables. 

•  If there is a linear dependence, the calculation of       
may involve round off errors or loss of significance 
leading to non-logical estimates for 

Multiple Linear Regression 
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( ) 1'X X
−

( )'X X

Β̂



•  A multiple coefficient of determination, R2 (as in 
case of simple linear regression) is defined as 

Multiple Linear Regression 
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2

' ' 2

' 2

Sum of squares dueto regressionR
Sum of squares about themean
X Y ny
Y Y ny

=

Β −
=

−



In a watershed, the mean annual flood (Q) is 
considered to be dependent on area of watershed (A) 
and rainfall(R). The table gives the observations for 
12 years. Obtain regression coefficients and R2 value. 

Example – 1 
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Q in 
thousand 

cms 
0.44 0.24 2.41 2.97 0.7 0.11 0.05 0.51 0.25 0.23 0.1 0.054 

A in 
thousand 
hectares 

324 226 1474 2142 420 45 38 363 77 84 46 38 

Rainfall 
in cm 43 53 48 50 43 61 81 68 74 71 71 69 



The regression model is as follows 
 
          Q = β1 + β2A + β3R 
 
Where Q is the mean flood in thousand m2/sec, 
            A is the watershed area in thousand hectares and 
            R is the average annual daily rainfall in mm 
 
This is represented in matrix form as 
 
 
 

Example – 1 (Contd.) 
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( ) ( ) ( )12 1 12 3 3 1Y X× × ×= × Β



Example – 1 (Contd.) 
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1

2

3

0.44 1 324 43
0.24 1 226 53
2.41 1 1474 48
2.97 1 2142 50
0.7 1 420 43
0.11 1 45 61
0.05 1 38 81
0.51 1 363 68
0.25 1 77 74
0.23 1 84 71
0.1 1 46 71
0.054 1 38 69

β
β
β

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎡
⎢ ⎥ ⎢ ⎥= ×⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

To obtain 
coefficients 
this 
equation is 
to be solved 
 
 
 



The coefficients are obtained from  
 
           
 
 
 
 
 

Example – 1 (Contd.) 
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( ) 1' 'ˆ X X X Y
−

Β =

( )

2
,1 ,2 ,1 ,3 ,1

1 1 1

' 2
,1 ,2 ,2 ,3 ,2

1 1 1

2
,1 ,3 ,2 ,3 ,3

1 1 1

n n n

i i i i i
i i i
n n n

i i i i i
i i i
n n n

i i i i i
i i i

x x x x x

X X x x x x x

x x x x x

= = =

= = =

= = =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑



 
 
 
 
The inverse of this matrix is  
 
           
 
 
 
 
 

Example – 1 (Contd.) 
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( )'

12 5277 732
5277 7245075 269879
732 269879 46536

X X
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

( )
4

1' 4 7 6

6 4

3.35 6.1 10 0.05
6.1 10 2.9 10 7.9 10
0.05 7.9 10 7.5 10

X X

−

− − − −

− −

⎡ ⎤− × −
⎢ ⎥

= − × × ×⎢ ⎥
⎢ ⎥− × ×⎣ ⎦



 
 
 
 
  
 
           
 
 
 
 
 

Example – 1 (Contd.) 
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( )
1

'
,2

1

,3
1

8.06
10642
417

n

i
i
n

i i
i
n

i i
i

y

X Y x y

x y

=

=

=

⎡ ⎤
⎢ ⎥
⎢ ⎥ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥
⎢ ⎥
⎣ ⎦

∑

∑

∑



 
 
 
 
  
 
           
 
 
 
 
 

Example – 1 (Contd.) 
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( ) 1' '

4

4 7 6

6 4

5

ˆ

3.35 6.1 10 0.05 8.06
6.1 10 2.9 10 7.9 10 10642
0.05 7.9 10 7.5 10 417

0.0351
0.0014

5.0135 10

X X X Y
−

−

− − −

− −

−

Β =

⎡ ⎤− × − ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − × × × ×⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− × × ⎣ ⎦⎣ ⎦

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥×⎣ ⎦



Therefore the regression equation is as follows 
 
         Q = 0.0351 + 0.0014A + 5.0135*10-5R 
 
From this equation, the estimated Q and the 
corresponding errors are tabulated 

Example – 1 (Contd.) 
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Example – 1 (Contd.) 
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Q A I e 
0.44 324 43 0.49 -0.05 
0.24 226 53 0.35 -0.11 
2.41 1474 48 2.10 0.31 
2.97 2142 50 3.04 -0.07 
0.7 420 43 0.63 0.07 
0.11 45 61 0.10 0.01 
0.05 38 81 0.09 -0.04 
0.51 363 68 0.55 -0.04 
0.25 77 74 0.15 0.10 
0.23 84 71 0.16 0.07 
0.1 46 71 0.10 0.00 

0.054 38 69 0.09 -0.04 

Q̂



Multiple coefficient of determination, R2 : 

Example – 1 (Contd.) 
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' ' 2
2

' 2

15.64 5.42
15.77 5.42
0.99

X Y nyR
Y Y ny
Β −

=
−

−
=

−
=


