

STOCHASTIC HYDROLOGY

Lecture -21 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

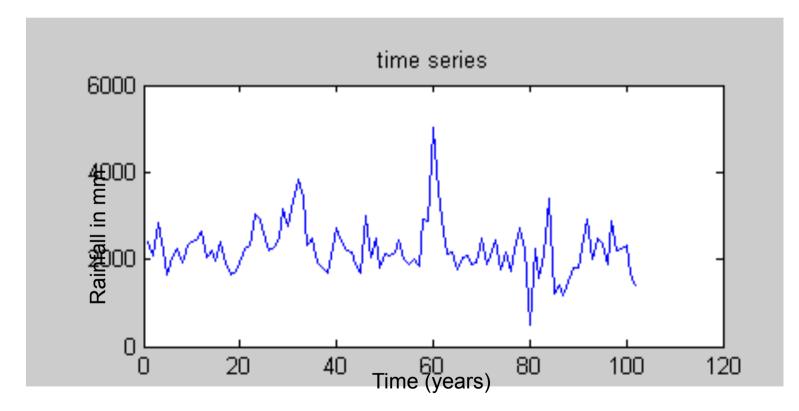
Summary of the previous lecture

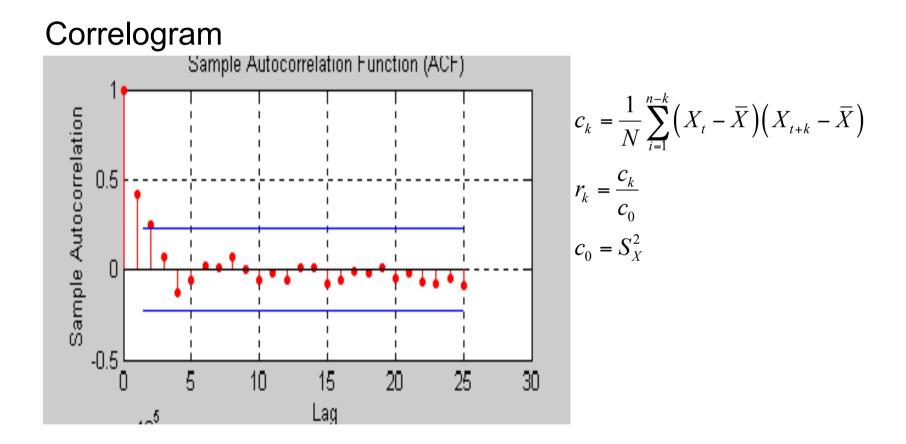
- Case study -3: Monthly streamflows at KRS reservoir
 - Validation of the model
- Case study -4: Monthly streamflow of a river
 - Plots of Time series, Correlogram, Partial Autocorrelation function and Power spectrum
 - Candidate ARMA models
 - Log Likelihood
 - Mean square error
 - Validation test (Residual mean)

CASE STUDIES -ARMA MODELS

Case study – 5

Sakleshpur Annual Rainfall Data (1901-2002)





PAC function

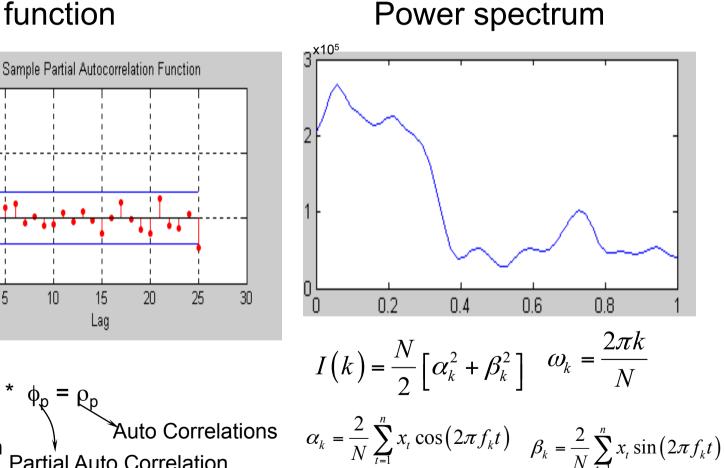
Sample Partial Autocorrelations

0.5

-0.5

Π

5



P_p* Auto Correlation Partial Auto Correlation

10

15

Lag

20

6

Likelihood
9.078037
8.562427
8.646781
9.691461
9.821681
9.436822
8.341717
8.217627
7.715415
5.278434
6.316174
6.390390

- ARMA(5,0) is selected with highest likelihood value
- The parameters for the selected model are as follows

 $\phi_1 = 0.40499$ $\phi_2 = 0.15223$ $\phi_3 = -0.02427$ $\phi_4 = -0.2222$ $\phi_5 = 0.083435$ Constant = -0.000664

• Significance of residual mean

Model	η(e)	t _{0.95} (N)
ARMA(5,0)	0.000005	1.6601

-52

Significance of periodicities:

Periodicity	η	F _{0.95} (2, N-2)
1 st	0.000	3.085
2 nd	0.00432	3.085
3 rd	0.0168	3.085
4 th	0.0698	3.085
5 th	0.000006	3.085
6 th	0.117	3.085

• Whittle's white noise test:

Model	η	F _{0.95} (n1, N–n1)
ARMA(5,0)	0.163	1.783

Model	MSE	
AR(1)	1.180837	
AR(2)	1.169667	
AR(3)	1.182210	$D - \chi - \chi$
AR(4)	1.168724	
AR(5)	1.254929	
AR(6)	1.289385	$]$ ξ ℓ_{r}
ARMA(1,1)	1.171668	
ARMA(1,2)	1.156298	MSE
ARMA(2,1)	1.183397	pise la dat
ARMA(2,2)	1.256068	MSE Valdat
ARMA(3,1)	1.195626	
ARMA(3,2)	27.466087	

- ARMA(1, 2) is selected with least MSE value for • one step forecasting
- The parameters for the selected model are as follows

ARMA (1, 2)

 $\phi_1 = 0.35271$ $X_{t} = \Phi_{1} X_{t-1} + \tilde{\Phi}_{1} \mathcal{E}_{t-1}$ $+ \tilde{\Phi}_{1} \mathcal{E}_{t-2} + \mathcal{E}_{t}$ $\theta_1 = 0.017124$ $\theta_2 = -0.216745$ Constant = -0.009267

• Significance of residual mean

Model	η(e)	t _{0.95} (N)
ARMA(1, 2)	-0.0026	1.6601

Significance of periodicities:

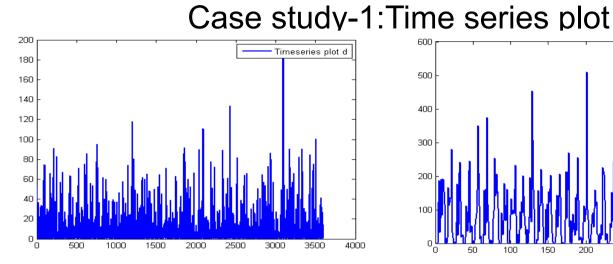
Periodicity	η	F _{0.95} (2, N-2)
1 st	0.000	3.085
2 nd	0.0006	3.085
3 rd	0.0493	3.085
4 th	0.0687	3.085
5 th	0.0003	3.085
6 th	0.0719	3.085

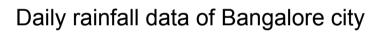
Case study – 5 (Contd.) 25(-Kmax)

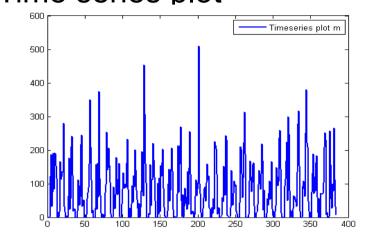
• Whittle's white noise test:

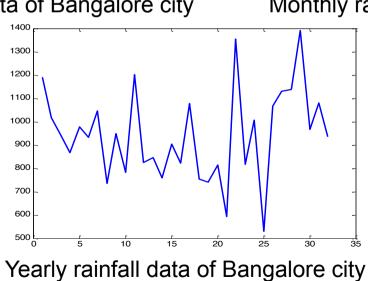
Model	η	F _{0.95} (n1, N–n1)
ARMA(1, 2)	0.3605	1.783

SUMMARY OF CASE STUDIES

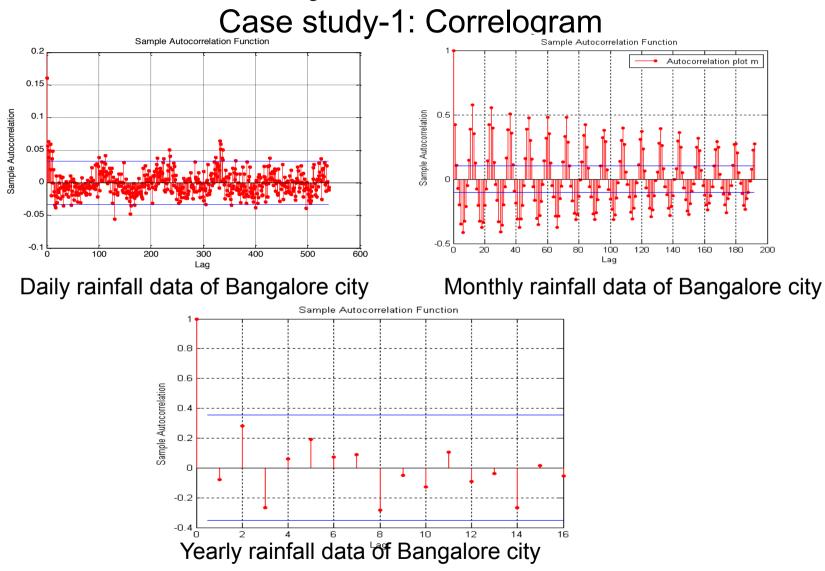


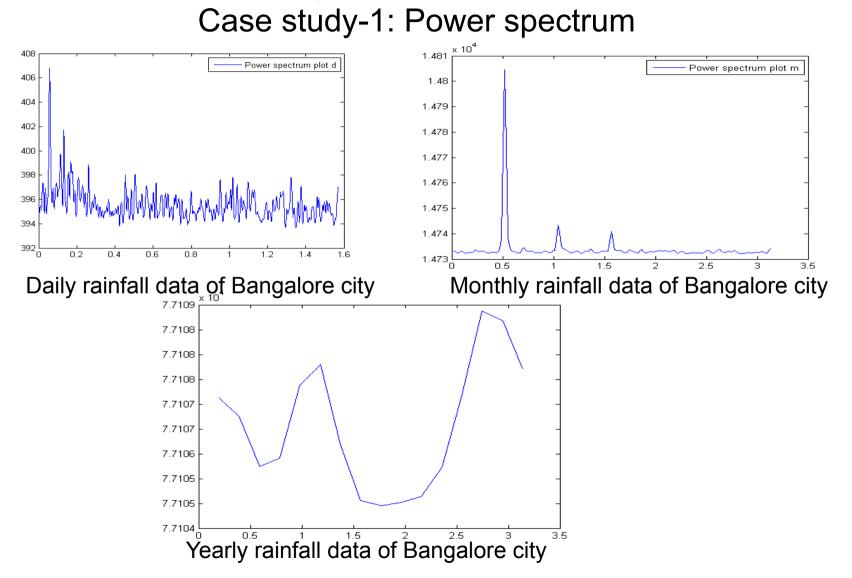


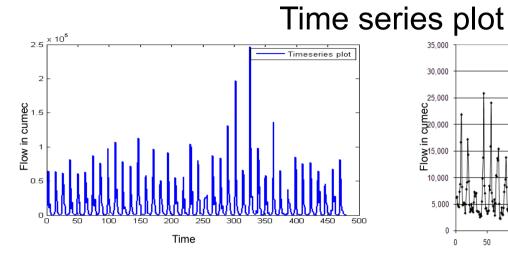


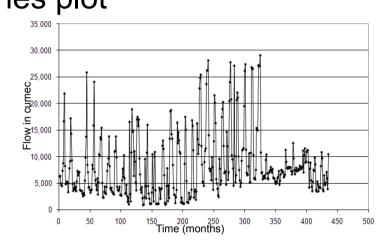


Monthly rainfall data of Bangalore city

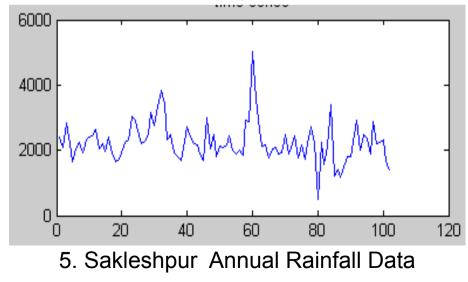




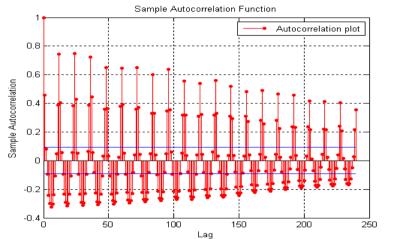


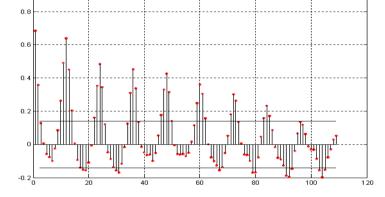


3. Monthly stream flow data for Cauvery 4. Monthly stream flow data of a river



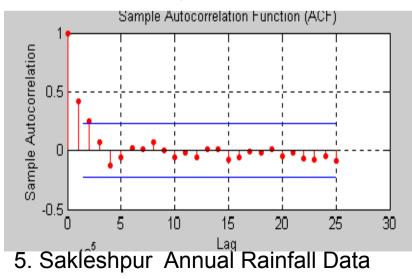
Summary of Case studies Correlogram



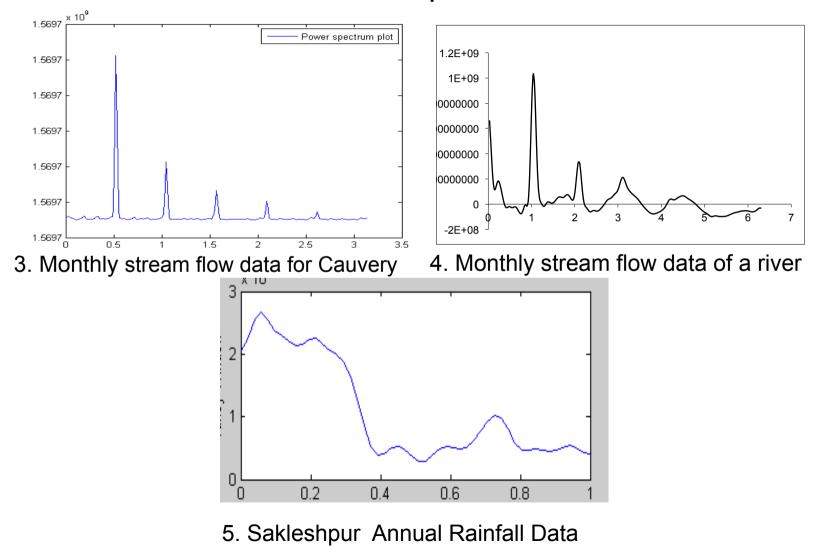


3. Monthly stream flow data for Cauvery

4. Monthly stream flow data of a river



Power spectrum



Summary of Case studies **ARMA Models**

3. Monthly stream flow data for Cauvery ARMA(4, 0) - For data generationARMA(1, 0) - For one step forecasting

. USGS Site 4. Monthly stream flow data of a river ARMA (8, 0) – For both data generation & one step forecasting

5. Sakleshpur Annual Rainfall Data ARMA(5, 0) - For data generationARMA(1, 2) - For one step forecasting

MARKOV CHAINS

A Markov chain is a stochastic process with the property that value of process X_t at time t depends on its value at time t-1 and not on the sequence of other values (X_{t-2}, X_{t-3},..., X₀) that the process passed through in arriving at X_{t-1}.

$$P[X_{t}/X_{t-1}, X_{t-2}, \dots, X_{0}] = P[X_{t}/X_{t-1}]$$

Single step Markov chain

$$P\left[X_t = a_j / X_{t-1} = a_i\right]$$

- This conditional probability gives the probability at time t will be in state 'j', given that the process was in state 'i' at time t-1.
- The conditional probability is independent of the states occupied prior to t-1.
- For example, if X_{t-1} is a dry day, we would be interested in the probability that X_t is a dry day or a wet day.
- This probability is commonly called as transition
 probability

$$P\left[X_t = a_j / X_{t-1} = a_i\right] = P_{ij}^t$$

- Usually written as P_{ij}^t indicating the probability of a step from a_i to a_i at time 't'.
- If P_{ij} is independent of time, then the Markov chain is said to be homogeneous.

i.e.,
$$P_{ij}^t = P_{ij}^{t+\tau} \quad \forall \quad t \text{ and } \tau$$

the transition probabilities remain same across time

Transition Probability Matrix(TPM): t+1→1 2 3 . . m t ↓ $P = \begin{bmatrix} P_{21} \\ P_{31} \\ \vdots \\ \vdots \\ P_{m1} \\ P_{m2} \end{bmatrix}$ P_{mm}

$$\sum_{j=1}^{m} P_{ij} = 1 \quad \forall i$$

- Elements in any row of TPM sum to unity
- TPM can be estimated from observed data by enumerating the number of times the observed data went from state 'i' to 'j'
- P_j⁽ⁿ⁾ is the probability of being in state 'j' in time step 'n'.

• $p_j^{(0)}$ is the probability of being in state 'j' in period t = 0.

$$p^{(0)} = \begin{bmatrix} p_1^{(0)} & p_2^{(0)} & \dots & p_m^{(0)} \end{bmatrix}_{1 \times m} \qquad \begin{array}{c} \dots & \text{Probability} \\ \text{vector at time 0} \end{array}$$

$$p^{(n)} = \begin{bmatrix} p_1^{(n)} & p_2^{(n)} & \dots & p_m^{(n)} \end{bmatrix}_{1 \times m} \qquad \begin{array}{c} \dots & \text{Probability} \\ & \text{vector at time} \\ & \text{`n'} \end{array}$$

• If p⁽⁰⁾ is given and TPM is given

$$p^{(1)} = p^{(0)} \times P$$

$$p^{(1)} = \begin{bmatrix} p_1^{(0)} & p_2^{(0)} & \dots & p_m^{(0)} \end{bmatrix} \begin{bmatrix} P_{11} & P_{12} & P_{13} & \dots & P_{1m} \\ P_{21} & P_{22} & P_{23} & \dots & P_{2m} \\ P_{31} & & & & \\ \vdots & & & & \\ P_{m1} & P_{m2} & & P_{mm} \end{bmatrix}$$

$$= p_1^{(0)} P_{11} + p_2^{(0)} P_{21} + \dots + p_m^{(0)} P_{m1} \qquad \dots \text{ Probability of going to state 1}$$

$$= p_1^{(0)} P_{12} + p_2^{(0)} P_{21} + \dots + p_m^{(0)} P_{m2}$$

.... Probability of going to state 2

of

And so on...

Therefore

$$p^{(1)} = \begin{bmatrix} p_1^{(1)} & p_2^{(1)} & \dots & p_m^{(1)} \end{bmatrix}_{1 \times m}$$
$$p^{(2)} = p^{(1)} \times P$$
$$= p^{(0)} \times P \times P$$
$$= p^{(0)} \times P^2$$

In general,

$$p^{(n)} = p^{(0)} \times P^n$$

- As the process advances in time, p_j⁽ⁿ⁾ becomes less dependent on p⁽⁰⁾
- The probability of being in state 'j' after a large number of time steps becomes independent of the initial state of the process.
- The process reaches a steady state at large n

$$p = p \times P^n$$

• As the process reaches steady state, the probability vector remains constant

Example – 1

Consider the TPM for a 2-state first order homogeneous Markov chain as

$$TPM = \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix}$$

State 1 is a non-rainy day and state 2 is a rainy day Obtain the

- 1. probability of day 1 is non-rainfall day / day 0 is rainfall day
- 2. probability of day 2 is rainfall day / day 0 is non-rainfall day
- probability of day 100 is rainfall day / day 0 is non-rainfall day

 probability of day 1 is non-rainfall day / day 0 is rainfall day No rain rain

$$TPM = \begin{bmatrix} No \ rain \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix}$$

The probability is 0.4

2. probability of day 2 is rainfall day / day 0 is nonrainfall day

$$p^{(2)} = p^{(0)} \times P^2$$

$$p^{(2)} = \begin{bmatrix} 0.7 & 0.3 \end{bmatrix} \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix}$$
$$= \begin{bmatrix} 0.61 & 0.39 \end{bmatrix}$$

The probability is 0.39

3. probability of day 100 is rainfall day / day 0 is nonrainfall day

$$p^{(n)} = p^{(0)} \times P^n$$

$$P^{2} = P \times P$$

$$= \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix} \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix} = \begin{bmatrix} 0.61 & 0.39 \\ 0.52 & 0.48 \end{bmatrix}$$

$$P^{4} = P^{2} \times P^{2} = \begin{bmatrix} 0.5749 & 0.4251 \\ 0.5668 & 0.4332 \end{bmatrix}$$

$$P^{8} = P^{4} \times P^{4} = \begin{bmatrix} 0.5715 & 0.4285 \\ 0.5714 & 0.4286 \end{bmatrix}$$

$$P^{16} = P^{8} \times P^{8} = \begin{bmatrix} 0.5714 & 0.4286 \\ 0.5714 & 0.4286 \end{bmatrix}$$

Steady state probability

 $p = \begin{bmatrix} 0.5714 & 0.4286 \end{bmatrix}$

For steady state,

$$p = p \times P^{n}$$

= $\begin{bmatrix} 0.5714 & 0.4286 \end{bmatrix} \begin{bmatrix} 0.5714 & 0.4286 \\ 0.5714 & 0.4286 \end{bmatrix}$
= $\begin{bmatrix} 0.5714 & 0.4286 \end{bmatrix}$