STOCHASTIC HYDROLOGY

Lecture -20

Course Instructor: Prof. P. P. MUJUMDAR

Department of Civil Engg., IISc.

Summary of the previous lecture

- Case study -3: Monthly streamflows ate KRS reservoir
 - Plots of Time series, Correlogram, Partial Autocorrelation function and Power spectrum
 - Standardization to remove periodicities
 - Candidate ARMA models : (contiguous and noncontiguous)
 - Log Likelihood
 - Mean square error

CASE STUDIES - ARMA MODELS

Case study – 3

Monthly Stream flow (cum/sec) Statistics(1934 -1974) for Cauvery River at Krishna Raja Sagar Reservoir is considered in the case study.

- •Time series of the data, auto correlation function, partial auto correlation function and the power spectrum are plotted.
- •The series indicates presence of periodicities.
- •The series is standardized to remove the periodicities.

- Standardized series is considered for fitting the ARMA models
- Total length of the data set N = 480
- Half the data set (240 values) is used to construct the model and other half is used for validation.
- Both contiguous and non-contiguous models are studied
- Non-contiguous models consider the most significant AR and MA terms leaving out the intermediate terms

Contiguous models:

$L_i = -$	$-\frac{N}{2}\ln(\sigma_{i})$	$-n_i$
•	2 ``	,

SI. No	Model	Likelihood values
1		29.33
2	ARMA(2,0)	28.91
3	ARMA(3,0)	28.96
4	ARMA(4,0)	31.63
5	ARMA(5,0)	30.71
6	ARMA(6,0)	29.90
	ARMA(1,1)	30.58
8	ARMA(1,2)	29.83
9	ARMA(2,1)	29.83
10	ARMA(2,2)	28.80
11	ARMA(3,1)	29.45

Non-contiguous models*:

SI. No	Model	Likelihood values
1	ARMA(2,0)	28.52
2	ARMA(3,0)	28.12
3	ARMA(4,0)	28.21
4	ARMA(5,0)	30.85
5	ARMA(6,0)	29.84
6	ARMA(7,0)	29.12
7	ARMA(2,2)	29.81
8	ARMA(2,3)	28.82
9	ARMA(3,2)	28.48
10	ARMA(3,3)	28.06
11	ARMA(4,2)	28.65

^{*:} The last AR and MA terms correspond to the 12th lag

- For this time series, the likelihood values for
 - contiguous model = 31.63
 - non-contiguous model = 30.85
- Hence contiguous ARMA(4,0) can be used.
- The parameters for the selected model are as follows

```
\phi_1 = 0.2137
\phi_2 = 0.0398
\phi_3 = 0.054
\phi_4 = 0.1762
Constant = -0.0157
```

Case study – 3 (Contd.) Forecasting Models

Contiguous models:

SI. No	Model	Mean square error values
1	ARMA(1,0)	0.97
2	ARMA(2,0)	1.92
3	ARMA(3,0)	2.87
4	ARMA(4,0)	3.82
5	ARMA(5,0)	4.78
6	ARMA(6,0)	5.74
7	ARMA(1,1)	2.49
8	ARMA(1,2)	2.17
9	ARMA(2,1)	3.44
10	ARMA(2,2)	4.29
11	ARMA(3,1)	1.89

Non-contiguous models:

SI. No	Model	Mean square error values
1	ARMA(2,0)	0.96
2	ARMA(3,0)	1.89
3	ARMA(4,0)	2.84
4	ARMA(5,0)	3.79
5	ARMA(6,0)	4.74
6	ARMA(7,0)	5.7
7	ARMA(2,2)	2.42
8	ARMA(2,3)	1.99
9	ARMA(3,2)	2.52
10	ARMA(3,3)	1.15
11	ARMA(4,2)	1.71

- The simplest model AR(1) results in the least value of the MSE
- For one step forecasting, quite often the simplest model is appropriate
- Also as the number of parameters increases, the MSE increases which is contrary to the common belief that models with large number of parameters give better forecasts.
- AR(1) model is recommended for forecasting the series and the parameters are as follows

$$\phi_1 = 0.2557$$
 and C = -0.009

- Validation tests on the residual series
 - Significance of residual mean
 - Significance of periodicities
 - Cumulative periodogram test or Bartlett's test
 - White noise test
 - Whittle's test
 - Portmanteau test

• Residuals,
$$e_t = X_t - \left(\sum_{j=1}^{m_1} \phi_j X_{t-j} + \sum_{j=1}^{m_2} \theta_j e_{t-j} + C\right)$$
Residual Data Simulated from the model

Significance of residual mean:

SI. No	Model	η(e)	t _{0.95} (239)
1	ARMA(1,0)	0.002	1.645
2	ARMA(2,0)	0.006	1.645
3	ARMA(3,0)	0.008	1.645
4	ARMA(4,0)	0.025	1.645
5	ARMA(5,0)	0.023	1.645
6	ARMA(6,0)	0.018	1.645
7	ARMA(1,1)	0.033	1.645
8	ARMA(1,2)	0.104	1.645
9	ARMA(2,1)	0.106	1.645
10	ARMA(2,2)	0.028	1.645

$$\eta(e) = \frac{N^{1/2}\overline{e}}{\hat{\rho}^{1/2}}$$

 $\eta(e) \le t(0.95, 240-1);$ All models pass the test

Significance of periodicities:

$$\eta(e) = \frac{\gamma_k^2 (N-2)}{4\hat{\rho}_1}$$

$$\gamma_k^2 = \alpha_k^2 + \beta_k^2$$

$$\hat{\rho}_1 = \frac{1}{N} \left[\sum_{t=1}^{N} \left\{ e_t - \hat{\alpha} \cos(\omega_k t) - \hat{\beta} \sin(\omega_k t) \right\}^2 \right]$$

$$\alpha_k = \frac{2}{N} \sum_{t=1}^n e_t \cos(\omega_k t)$$

$$\beta_k = \frac{2}{N} \sum_{t=1}^n e_t \sin(\omega_k t)$$

 $2\pi/\omega_k$ is the periodicity for which test is being carried out.

 $\eta(e) \le F_{\alpha}(2, N-2)$ – Model passes the test

Significance of periodicities:

	-	I				1
SI. No	Model	η \	E (2.238.)			
31. 140	Model	1st	2 nd	3 rd	4 th	$F_{0.95}(2,238)$
1	ARMA(1,0)	0.527	1.092	0.364	0.065	3.00
2	ARMA(2,0)	1.027	2.458	0.813	0.129	3.00
3	ARMA(3,0)	1.705	4.319	1.096	0.160	3.00
4	ARMA(4,0)	3.228	6.078	0.948	0.277	3.00
5	ARMA(5,0)	3.769	7.805	1.149	0.345	3.00
6	ARMA(6,0)	4.19	10.13	1.262	0.441	3.00
7	ARMA(1,1)	4.737	10.09	2.668	0.392	3.00
8	ARMA(1,2)	6.786	10.67	2.621	0.372	
9	ARMA(2,1)	7.704	12.12	2.976	0.422	3.00
10	ARMA(2,2)	6.857	13.22	3.718	0.597	3.00

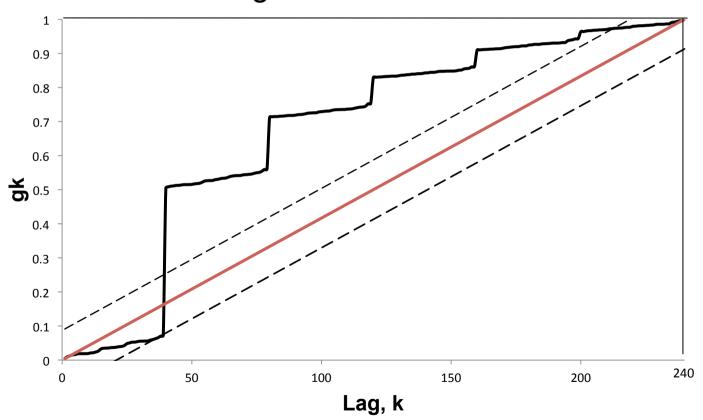
Significance of periodicities by Bartlett's test: (Cumulative periodogram test)

$$\gamma_k^2 = \left\{ \frac{2}{N} \sum_{t=1}^N e_t \cos(\omega_k t) \right\}^2 + \left\{ \frac{2}{N} \sum_{t=1}^N e_t \sin(\omega_k t) \right\}^2$$

$$k = 1, 2, \dots, N/2$$

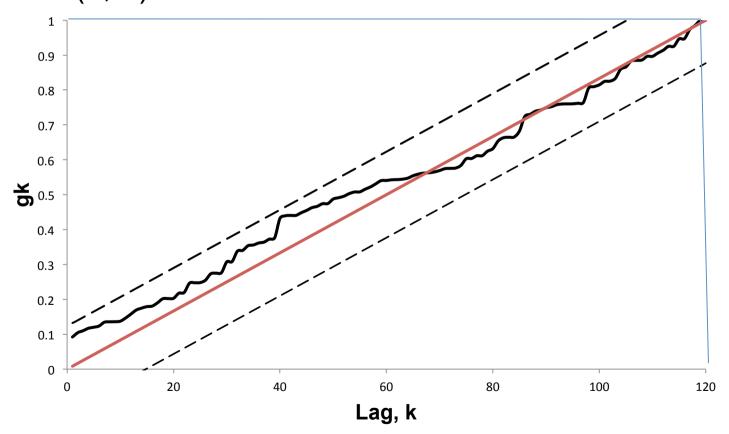
$$g_k = \frac{\sum_{j=1}^k \gamma_j^2}{\sum_{j=1}^{N/2} \gamma_k^2}$$

Cumulative periodogram for the original series without standardizing



- The confidence limits $(1.35/(N/2)^{1/2} = 0.087)$ are plotted for 95% confidence. (N = 480 in this case)
- Most part of the cumulative periodogram lies outside the significance bands confirming the presence of periodicity in the data.
- for k=40, a spike in the graph is seen indicating the significant periodicity
- This 'k' corresponds to a periodicity of 12 months (480/40)
- k=80, corresponds to a periodicity of 6 months

Cumulative periodogram for the residual series of ARMA(4, 0) model



- The confidence limits (±1.35/(N/2)^{1/2} = ± 0.123) are plotted for 95% confidence. (N = 240, in this case)
- Cumulative periodogram lies within the significance bands confirming that no significant periodicity present in the residual series.
- The model passes the test.

White noise test (Whittle's test):

- This test is carried out to test the absence of correlation in the series.
- The covariance r_k at lag k of the error series {e_t}

$$r_k = \frac{1}{N-k} \sum_{j=k+1}^{N} e_j e_{j-k}$$
 $k = 0, 1, 2, \dots, k_{\text{max}}$

The value of k_{max} is normally chosen as 0.15N

The covariance matrix is

A statistic η(e) is defined as

$$\eta(e) = \frac{N}{n1-1} \left(\frac{\hat{\rho}_0}{\hat{\rho}_1} - 1\right)$$

$$\mathsf{n1} = \mathsf{k}_{\mathsf{max}}$$

Where $\hat{\rho}_0$ is the lag zero correlation =1, and

$$\hat{\rho}_1 = \frac{\det \Gamma_{n1}}{\det \Gamma_{n1-1}}$$

The matrix Γ_{n1-1} is constructed by eliminating the last row and the last column from the Γ_{n1} matrix.

- The statistic $\eta(e)$ is approximately distributed as $F_{\alpha}(n1, N-n1)$, where α is the significance level at which the test is being carried out.
- If the value of $\eta(e) \le F_{\alpha}(n1, N-n1)$, then the residual series is uncorrelated.

Case study – 3 (Contd.) Whittle's test - white noise $\eta(e) = \frac{N}{n1-1} \left(\frac{\hat{\rho}_0}{\hat{\rho}_1} - \frac{N}{n} \right)$

$n(\rho)$ –		$(\hat{ ho_0}]$	_1
$\eta(e)$ =	$\overline{n1-1}$	$\langle \hat{ ho}_{\!_1} \rangle$	_ 1

F _{0.95} (2,239)	n1 = 73	n1 = 49	n1 = 25	
	1.29	1.39	1.52	
Model	η	η	η	
ARMA(1,0)	0.642	0.917	0.891	
ARMA(2,0)	0.628	0.898	0.861	
ARMA(3,0)	0.606	0.868	0.791	
ARMA(4,0)	0.528	0.743	0.516	
ARMA(5,0)	0.526	0.739	0.516	
ARMA(6,0)	0.522	0.728	0.493	
ARMA(1,1)	0.595	0.854	0.755	
ARMA(1,2)	0.851	1.256	1.581	
ARMA(2,1)	0.851	1.256	1.581	
ARMA(2,2)	0.589	0.845	0.737	

model fails

Case study – 3 (Contd.) anteau test for white noise: $\eta(e) = (N - n1) \sum_{k=1}^{n1} \left(\frac{r_k}{r_0}\right)^2$

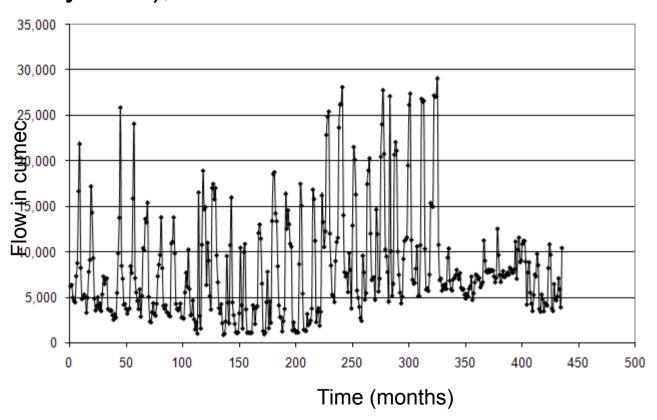
Portmanteau test for white noise:

$\chi^{2}_{0.95}(k_{max})$	kmax = 48	kmax = 36	kmax = 24	kmax = 12
Model	65.0	50.8	36.4	21.0
Model	η	η	η	η
ARMA(1,0)	31.44	33.41	23.02	14.8
ARMA(2,0)	32.03	34.03	24.47	15.17
ARMA(3,0)	30.17	32.05	21.61	13.12
ARMA(4,0)	20.22	21.49	11.85	4.31
ARMA(5,0)	19.84	21.08	11.75	4.14
ARMA(6,0)	19.64	20.87	11.48	3.79
ARMA(1,1)	29.89	31.76	22.24	12.76
ARMA(1,2)	55.88	59.38	48.37	39.85
ARMA(2,1)	55.88	59.38	48.37	38.85
ARMA(2,2)	28.62	30.41	20.39	11.25

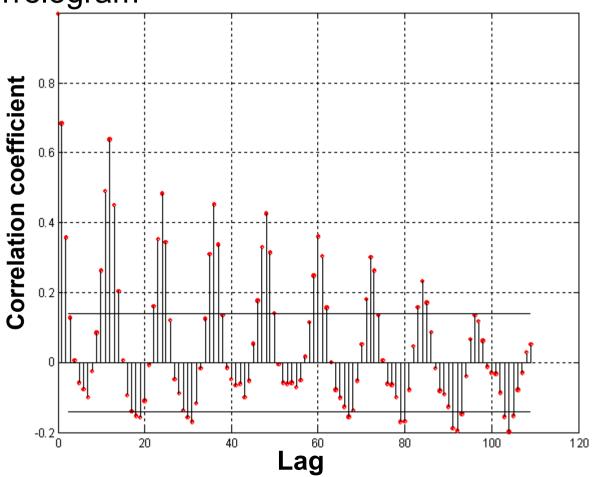
model fails

Case study – 4

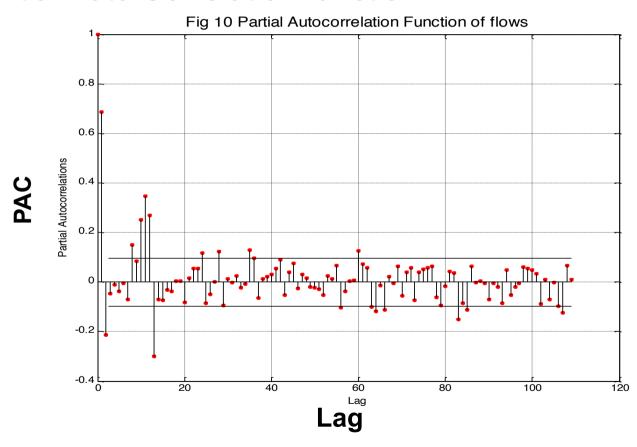
Monthly Stream flow (1928-1964) of a river (37 years of monthly data);



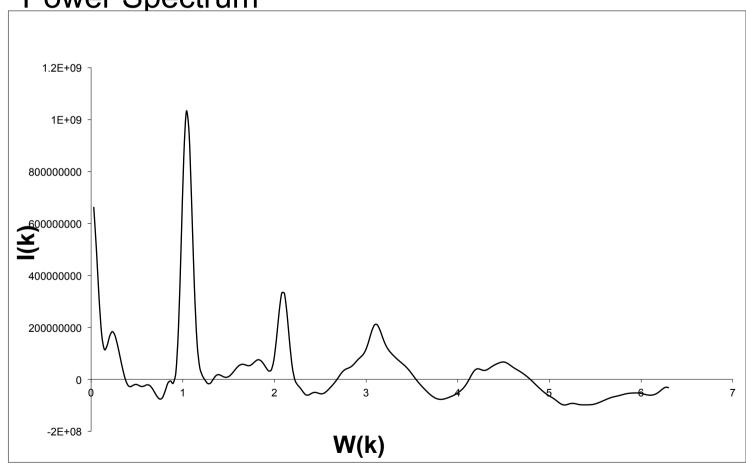
Correlogram



Partial Auto Correlation function



Power Spectrum



Model name	constant	φ ₁	φ ₂	ϕ_{3}	φ ₄	φ ₅	φ ₆	φ ₇	φ ₈	θ_1	θ_{2}
ARMA(1,0)	-0.097	0.667									
ARMA(2,0)	0.049	0.042	0.044								
ARMA(3,0)	-0.111	0.767	-0.148	-0.003							
ARMA(4,0)	0.052	0.042	0.058	0.063	0.044						
ARMA(5,0)	0.055	0.042	0.058	0.063	0.048	0.038					
ARMA(6,0)	-0.124	0.764	-0.155	0.034	-0.029	-0.023	-0.021				
ARMA(7,0)	0.056	0.043	0.062	0.065	0.048	0.058	0.075	0.065			
ARMA(8,0)	0.054	0.042	0.060	0.063	0.048	0.058	0.078	0.088	0.061		
ARMA(1,1)	-0.131	0.551								0.216	
ARMA(2,1)	-0.104	0.848	-0.204							-0.083	
ARMA(3,1)	-0.155	0.351	0.165	-0.055						0.418	
ARMA(4,1)	-0.083	1.083	-0.400	0.091	-0.060					-0.318	
ARMA(1,2)	-0.139	0.526								0.241	0.025
ARMA(2,2)	378	1980	1160							1960	461
ARMA(0,1)	-0.298									0.594	
ARMA(0,2)	-0.297									0.736	0.281

SI. No	Model	Mean Square Error	Likelihood value
1	ARMA(1,0)	0.65	93.33
2	ARMA(2,0)	0.63	97.24
3	ARMA(3,0)	0.63	96.44
4	ARMA(4,0)	0.63	96.14
5	ARMA(5,0)	0.63	95.50
6	ARMA(6,0)	0.63	94.66
7	ARMA(7,0)	0.63	93.80
8	ARMA(8,0)	0.60	101.47
9	ARMA(1,1)	0.63	97.11
10	ARMA(2,1)	0.63	96.25
11	ARMA(3,1)	0.63	95.39
12	ARMA(4,1)	0.63	95.39
13	ARMA(1,2)	0.63	96.16
14	ARMA(2,2)	0.63	95.13
15	ARMA(0,1)	0.73	67.74
16	ARMA(0,2)	0.66	89.28

Significance of residual mean:

$$\eta(e) = \frac{N^{1/2}\overline{e}}{\hat{\rho}^{1/2}}$$

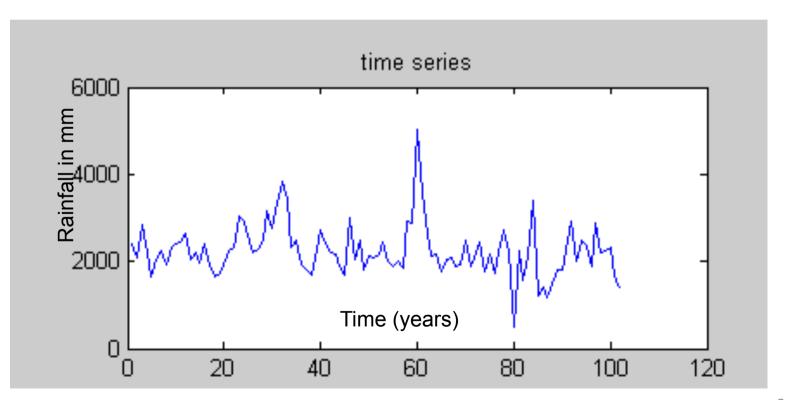
 \overline{e} is the estimate of the residual mean $\hat{\rho}$ is the estimate of the residual variance

All models pass the test

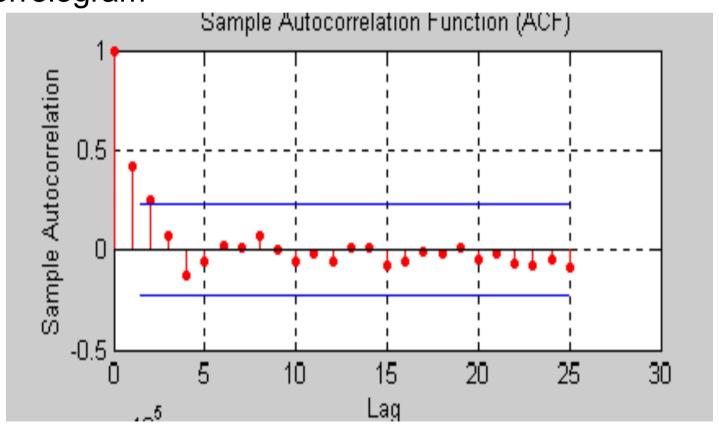
Model	Test t	
	η(e)	t(α, N–1)
ARMA(1,0)	1.78672E-05	1.645
ARMA(2,0)	6.0233E-06	1.645
ARMA(3,0)	4.82085E-05	1.645
ARMA(4,0)	-3.01791E-05	1.645
ARMA(5,0)	6.84076E-16	1.645
ARMA(6,0)	3.0215E-05	1.645
ARMA(7,0)	-6.04496E-06	1.645
ARMA(8,0)	5.54991E-05	1.645
ARMA(1,1)	-0.001132046	1.645
ARMA(2,1)	-0.002650292	1.645
ARMA(3,1)	-0.022776166	1.645
ARMA(4,1)	0.000410668	1.645
ARMA(1,2)	-0.000837092	1.645
ARMA(2,2)	0.002631505	1.645
ARMA(0,1)	0.022950466	1.645
ARMA(0,2)	0.019847826	1.645

Case study – 5

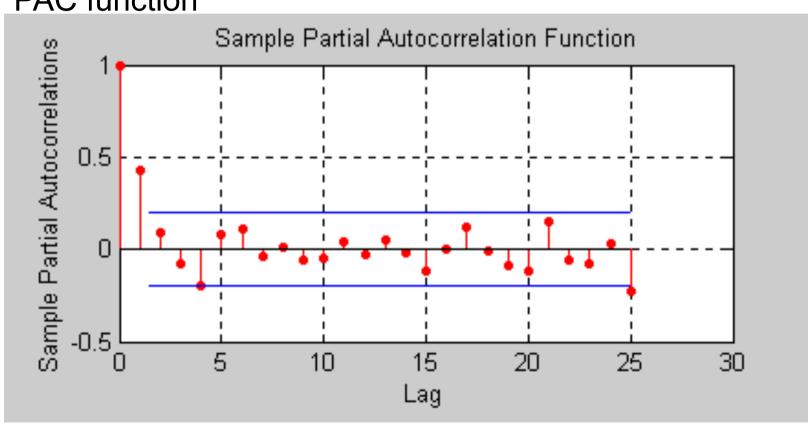
Sakleshpur Annual Rainfall Data (1901-2002)



Correlogram



PAC function



Model	Likelihood
AR(1)	9.078037
AR(2)	8.562427
AR(3)	8.646781
AR(4)	9.691461
AR(5)	9.821681
AR(6)	9.436822
ARMA(1,1)	8.341717
ARMA(1,2)	8.217627
ARMA(2,1)	7.715415
ARMA(2,2)	5.278434
ARMA(3,1)	6.316174
ARMA(3,2)	6.390390

- ARMA(5,0) is selected with highest likelihood value
- The parameters for the selected model are as follows

```
\phi_1 = 0.40499
\phi_2 = 0.15223
\phi_3 = -0.02427
\phi_4 = -0.2222
\phi_5 = 0.083435
Constant = -0.000664
```

Significance of residual mean

Model	η(e)	t _{0.95} (N)
	0.000005	1.6601

Significance of periodicities:

Periodicity	η	F _{0.95} (2,239)
1 st	0.000	3.085
2 nd	0.00432	3.085
3 rd	0.0168	3.085
4 th	0.0698	3.085
5 th	0.000006	3.085
6 th	0.117	3.085

• Whittle's white noise test:

Model	η	F _{0.95} (2, N-2)
ARMA(5,0)	0.163	1.783

Model	MSE
AR(1)	1.180837
AR(2)	1.169667
AR(3)	1.182210
AR(4)	1.168724
AR(5)	1.254929
AR(6)	1.289385
ARMA(1,1)	1.171668
ARMA(1,2)	1.156298
ARMA(2,1)	1.183397
ARMA(2,2)	1.256068
ARMA(3,1)	1.195626
ARMA(3,2)	27.466087

- ARMA(1, 2) is selected with least MSE value for one step forecasting
- The parameters for the selected model are as follows

```
\phi_1 = 0.35271
```

$$\theta_1 = 0.017124$$

$$\theta_2$$
 = -0.216745

Constant = -0.009267

Significance of residual mean

Model	η(e)	t _{0.95} (N)
ARMA(1, 2)	-0.0026	1.6601

Significance of periodicities:

Periodicity	η	F _{0.95} (2,239)
1 st	0.000	3.085
2 nd	0.0006	3.085
3 rd	0.0493	3.085
4 th	0.0687	3.085
5 th	0.0003	3.085
6 th	0.0719	3.085

• Whittle's white noise test:

Model	η	F _{0.95} (2, N-2)
ARMA(1, 2)	0.3605	1.783

 A Markov chain is a stochastic process with the property that value of process X_t at time t depends on its value at time t-1 and not on the sequence of other values (X_{t-2}, X_{t-3},..... X₀) that the process passed through in arriving at X_{t-1}.

$$P\big[X_{t}/X_{t-1},X_{t-2},....X_{0}\big] = P\big[X_{t}/X_{t-1}\big]$$
 Single step Markov chain

$$P\left[X_{t} = a_{j} / X_{t-1} = a_{i}\right]$$

- This conditional probability gives the probability at time t will be in state 'j', given that the process was in state 'i' at time t-1.
- The conditional probability is independent of the states occupied prior to t-1.
- For example, if X_{t-1} is a dry day, we would be interested in the probability that X_t is a dry day or a wet day.
- This probability is commonly called as transition probability

$$P\left[X_{t} = a_{j} / X_{t-1} = a_{i}\right] = P_{ij}^{t}$$

- Usually written as P_{ij}^t indicating the probability of a step from a_i to a_i at time 't'.
- If P_{ij} is independent of time, then the Markov chain is said to be homogeneous.

i.e.,
$$P_{ij}^t = P_{ij}^{t+\tau} \quad \forall \quad \text{t and } \tau$$

the transition probabilities remain same across time

Transition Probability Matrix(TPM):

$$\sum_{j=1}^{m} P_{ij} = 1 \quad \forall i$$

- Elements in any row of TPM sum to unity
- TPM can be estimated from observed data by enumerating the number of times the observed data went from state 'i' to 'j'
- P_j ⁽ⁿ⁾ is the probability of being in state 'j' in time step 'n'.

• $p_j^{(0)}$ is the probability of being in state 'j' in period t = 0.

$$p^{(0)} = \begin{bmatrix} p_1^{(0)} & p_2^{(0)} & . & . & p_m^{(0)} \end{bmatrix}_{1 \times m}$$
 Probability vector at time 0

$$p^{(n)} = \begin{bmatrix} p_1^{(n)} & p_2^{(n)} & \dots & p_m^{(n)} \end{bmatrix}_{1 \times m} \quad \begin{array}{c} \dots & \text{Probability} \\ \text{vector at time} \\ \text{'n'} \end{array}$$

If p⁽⁰⁾ is given and TPM is given

$$p^{(1)} = p^{(0)} \times P$$

$$p^{(1)} = \begin{bmatrix} p_1^{(0)} & p_2^{(0)} & \dots & p_m^{(0)} \end{bmatrix} \begin{bmatrix} P_{11} & P_{12} & P_{13} & \dots & P_{1m} \\ P_{21} & P_{22} & P_{23} & \dots & P_{2m} \\ P_{31} & & & & & \\ \vdots & & & & & \\ P_{m1} & P_{m2} & & & P_{mm} \end{bmatrix}$$

=
$$p_1^{(0)}P_{11} + p_2^{(0)}P_{21} + \dots + p_m^{(0)}P_{m1}$$
 Probability of

going to state 1

=
$$p_1^{(0)}P_{12} + p_2^{(0)}P_{21} + \dots + p_m^{(0)}P_{m2}$$
 Probability of

going to state 2

And so on...

Therefore

$$p^{(1)} = \begin{bmatrix} p_1^{(1)} & p_2^{(1)} & \dots & p_m^{(1)} \end{bmatrix}_{1 \times m}$$

$$p^{(2)} = p^{(1)} \times P$$

$$= p^{(0)} \times P \times P$$

$$= p^{(0)} \times P^2$$

In general,

$$p^{(n)} = p^{(0)} \times P^n$$

- As the process advances in time, p_j⁽ⁿ⁾ becomes less dependent on p⁽⁰⁾
- The probability of being in state 'j' after a large number of time steps becomes independent of the initial state of the process.
- The process reaches a steady state at large n

$$p = p \times P^n$$

 As the process reaches steady state, the probability vector remains constant

Example – 1

Consider the TPM for a 2-state first order homogeneous Markov chain as

$$TPM = \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix}$$

State 1 is a non-rainy day and state 2 is a rainy day Obtain the

- 1. probability of day 1 is non-rainfall day / day 0 is rainfall day
- 2. probability of day 2 is rainfall day / day 0 is non-rainfall day
- probability of day 100 is rainfall day / day 0 is non-rainfall day

 probability of day 1 is non-rainfall day / day 0 is rainfall day
 No rain rain

$$TPM = \begin{bmatrix} 0.7 & 0.3 \\ rain \begin{bmatrix} 0.4 & 0.6 \end{bmatrix}$$

The probability is 0.4

2. probability of day 2 is rainfall day / day 0 is non-rainfall day

$$p^{(2)} = p^{(0)} \times P^2$$

$$p^{(2)} = \begin{bmatrix} 0.7 & 0.3 \end{bmatrix} \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix}$$
$$= \begin{bmatrix} 0.61 & 0.39 \end{bmatrix}$$

The probability is 0.39

3. probability of day 100 is rainfall day / day 0 is non-rainfall day

$$p^{(n)} = p^{(0)} \times P^n$$

$$P^{2} = P \times P$$

$$= \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix} \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix} = \begin{bmatrix} 0.61 & 0.39 \\ 0.52 & 0.48 \end{bmatrix}$$

$$P^{4} = P^{2} \times P^{2} = \begin{bmatrix} 0.5749 & 0.4251 \\ 0.5668 & 0.4332 \end{bmatrix}$$

$$P^{8} = P^{4} \times P^{4} = \begin{bmatrix} 0.5715 & 0.4285 \\ 0.5714 & 0.4286 \end{bmatrix}$$

$$P^{16} = P^{8} \times P^{8} = \begin{bmatrix} 0.5714 & 0.4286 \\ 0.5714 & 0.4286 \end{bmatrix}$$

Steady state probability

$$p = [0.5714 \quad 0.4286]$$

For steady state,

$$p = p \times P^{n}$$

$$= \begin{bmatrix} 0.5714 & 0.4286 \end{bmatrix} \begin{bmatrix} 0.5714 & 0.4286 \\ 0.5714 & 0.4286 \end{bmatrix}$$

$$= \begin{bmatrix} 0.5714 & 0.4286 \end{bmatrix}$$