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Summary	  of	  the	  previous	  lecture	  

•  Use of ARMA models for data generation 
and one-time step ahead forecasting 

•  Case studies  
–  Daily, monthly and annual rainfall 
–  Annual stramflow  
–  Monthly streamflow 
 

 
 



CASE STUDIES ON 
ARMA MODELS 
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Case study – 3 
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Monthly Stream flow (cum/sec) Statistics(1934 
-1974) for Cauvery River at Krishna Raja Sagar 
Reservoir is considered in the case study.  
 
• Time series of the data, auto correlation function, 
partial auto correlation function and the power 
spectrum are plotted.  
• The series indicates presence of periodicities. 
• The series is standardized to remove the 
periodicities.  
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Time series plot – original series 
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Correlogram  – original series 
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Partial auto correlation function – original series 
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Power spectrum – original series 
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Time series plot – Standardized series 
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Correlogram  – Standardized series 
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Partial auto correlation function – Standardized 
series 
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Power spectrum – Standardized series 
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•  Standardized series is considered for fitting the 
ARMA models 

•  Total length of the data set N = 480 
•  Half the data set (240 values) is used to construct 

the model and other half is used for validation. 
•  Both contiguous and non-contiguous models are 

studied 
•  Non-contiguous models consider the most 

significant AR and MA terms leaving out the 
intermediate terms 
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•  For example, a non-contiguous AR(3), with 
significant dependence at lags 1, 4 and 12, the  
model is written as 

 
•  Similarly the moving average terms are also 

considered and a non-contiguous ARMA(3, 3) is 
written as 

1 1 4 4 12 12t t t t tX X X X eφ φ φ− − −= + + +

1 1 4 4 12 12
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t t t t

t t t t
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•  The advantage of non-contiguous models is the 
reduction of number of AR and MA parameters to 
be estimated. 

•  Exactly which terms to include is to be decided 
based on the correlogram and spectral analysis of 
the series under consideration. 

•  For a given series, the choice of contiguous or a 
non-contiguous model is decided by the relative 
likelihood values for the two models 



Contiguous models: 

Case study – 3 (Contd.) 
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Sl. No Model  Likelihood values 
1 ARMA(1,0) 29.33 
2 ARMA(2,0) 28.91 
3 ARMA(3,0) 28.96 
4 ARMA(4,0) 31.63 
5 ARMA(5,0) 30.71 
6 ARMA(6,0) 29.90 
7 ARMA(1,1) 30.58 
8 ARMA(1,2) 29.83 
9 ARMA(2,1) 29.83 

10 ARMA(2,2) 28.80 
11 ARMA(3,1) 29.45 

( )ln
2i i i
NL nσ= − −



Non-contiguous models*: 

Case study – 3 (Contd.) 
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Sl. No Model Likelihood values 
1 ARMA(2,0) 28.52 
2 ARMA(3,0) 28.12 
3 ARMA(4,0) 28.21 
4 ARMA(5,0) 30.85 
5 ARMA(6,0) 29.84 
6 ARMA(7,0) 29.12 
7 ARMA(2,2) 29.81 
8 ARMA(2,3) 28.82 
9 ARMA(3,2) 28.48 

10 ARMA(3,3) 28.06 
11 ARMA(4,2) 28.65 

*: The last AR and MA terms correspond to the 12th lag 
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•  For this time series, the likelihood values for  
–  contiguous model = 31.63  
–  non-contiguous model  = 30.85 

•  Hence contiguous ARMA(4,0) can be used. 
•  The parameters for the selected model are as 

follows 
φ1 = 0.2137 
φ2 = 0.0398 
φ3 = 0.054 
φ4 = 0.1762 
Constant = -0.0157 



Contiguous models: 

Case study – 3 (Contd.) 
Forecasting Models 
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Sl. No Model Mean square error values 
1 ARMA(1,0) 0.97 
2 ARMA(2,0) 1.92 
3 ARMA(3,0) 2.87 
4 ARMA(4,0) 3.82 
5 ARMA(5,0) 4.78 
6 ARMA(6,0) 5.74 
7 ARMA(1,1) 2.49 
8 ARMA(1,2) 2.17 
9 ARMA(2,1) 3.44 

10 ARMA(2,2) 4.29 
11 ARMA(3,1) 1.89 



Non-contiguous models: 
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Sl. No Model Mean square error values 
1 ARMA(2,0) 0.96 
2 ARMA(3,0) 1.89 
3 ARMA(4,0) 2.84 
4 ARMA(5,0) 3.79 
5 ARMA(6,0) 4.74 
6 ARMA(7,0) 5.7 
7 ARMA(2,2) 2.42 
8 ARMA(2,3) 1.99 
9 ARMA(3,2) 2.52 

10 ARMA(3,3) 1.15 
11 ARMA(4,2) 1.71 
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•  The simplest model AR(1) results in the least 
value of the MSE 

•  For one step forecasting, quite often the simplest 
model is appropriate 

•  Also as the number of parameters increases, the 
MSE increases which is contrary to the common 
belief that models with large number of 
parameters give better forecasts. 

•  AR(1) model is recommended for forecasting the 
series and the parameters are as follows 
φ1 = 0.2557 and C = -0.009 
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•  Validation tests on the residual series 
•  Significance of residual mean 
•  Significance of periodicities 
•  Cumulative periodogram test or Bartlett’s test 
•  White noise test 

•  Whittle’s test 
•  Portmanteau test 

•  Residuals, 
1 2

1 1

m m

t t j t j j t j
j j

e X X eφ θ− −
= =

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
∑ ∑

Data	   Simulated from the model	  
Residual	  



Significance of residual mean: 
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Sl. No Model η(e) t0.95(239 ) 
1 ARMA(1,0) 0.002 1.645 
2 ARMA(2,0) 0.006 1.645 
3 ARMA(3,0) 0.008 1.645 
4 ARMA(4,0) 0.025 1.645 
5 ARMA(5,0) 0.023 1.645 
6 ARMA(6,0) 0.018 1.645 
7 ARMA(1,1) 0.033 1.645 
8 ARMA(1,2) 0.104 1.645 
9 ARMA(2,1) 0.106 1.645 

10 ARMA(2,2) 0.028 1.645 

( )
1/2

1/2ˆ
N eeη
ρ

=

η(e) < t(0.95, 240–1); 
All models pass the 
test	  



Significance of periodicities: 
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2π/ωk is the periodicity for which test is being carried 

out. 
 
η(e) < Fα(2, N–2 ) – Model passes the test 
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Significance of periodicities: 
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Sl. No Model 
η Value for the periodicity 

F0.95(2,238 ) 
1st  2nd  3rd  4th  

1 ARMA(1,0) 0.527 1.092 0.364 0.065 3.00 
2 ARMA(2,0) 1.027 2.458 0.813 0.129 3.00 
3 ARMA(3,0) 1.705 4.319 1.096 0.160 3.00 
4 ARMA(4,0) 3.228 6.078 0.948 0.277 3.00 
5 ARMA(5,0) 3.769 7.805 1.149 0.345 3.00 
6 ARMA(6,0) 4.19 10.13 1.262 0.441 3.00 
7 ARMA(1,1) 4.737 10.09 2.668 0.392 3.00 
8 ARMA(1,2) 6.786 10.67 2.621 0.372 3.00 
9 ARMA(2,1) 7.704 12.12 2.976 0.422 3.00 

10 ARMA(2,2) 6.857 13.22 3.718 0.597 3.00 



Significance of periodicities by Bartlett’s test : 
(Cumulative periodogram test) 
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Case study – 3 (Contd.) 

Cumulative periodogram  for the original series 
without standardizing 
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•  The confidence limits (+1.35/(N/2)1/2 = + 0.087) 
are plotted for 95% confidence. 

•  Most part of the cumulative periodogram lies 
outside the significance bands confirming the 
presence of periodicity in the data. 

•  for k=40, a spike in the graph is seen indicating 
the significant periodicity 

•  This ‘k’ corresponds to a periodicity of 12 months 
(480/40) 

•  k=80, corresponds to a periodicity of 6 months 
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Case study – 3 (Contd.) 

Cumulative periodogram  for the residual series of 
ARMA(4, 0) model 
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•  The confidence limits (+1.35/(N/2)1/2 = + 0.123) 
are plotted for 95% confidence. 

•  Cumulative periodogram lies within the 
significance bands confirming that no significant 
periodicity present in the residual series. 

•  The model passes the test. 
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Whittle’s test for white noise: 
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n1 = 73 n1 = 49 n1 = 25 
1.29 1.39 1.52 
η η η 

ARMA(1,0) 0.642 0.917 0.891 
ARMA(2,0) 0.628 0.898 0.861 
ARMA(3,0) 0.606 0.868 0.791 
ARMA(4,0) 0.528 0.743 0.516 
ARMA(5,0) 0.526 0.739 0.516 
ARMA(6,0) 0.522 0.728 0.493 
ARMA(1,1) 0.595 0.854 0.755 
ARMA(1,2) 0.851 1.256 1.581 
ARMA(2,1) 0.851 1.256 1.581 
ARMA(2,2) 0.589 0.845 0.737 

F0.95(2,239 ) 

Model 

( ) 0

1

ˆ
1

ˆ1 1
Ne
n

ρ
η

ρ
⎛ ⎞

= −⎜ ⎟
− ⎝ ⎠

model 
fails	  



Portmanteau test for white noise: 
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kmax = 48 kmax = 36 kmax = 24 kmax = 12 
65.0 50.8 36.4 21.0 
η η η η 

ARMA(1,0) 31.44 33.41 23.02 14.8 
ARMA(2,0) 32.03 34.03 24.47 15.17 
ARMA(3,0) 30.17 32.05 21.61 13.12 
ARMA(4,0) 20.22 21.49 11.85 4.31 
ARMA(5,0) 19.84 21.08 11.75 4.14 
ARMA(6,0) 19.64 20.87 11.48 3.79 
ARMA(1,1) 29.89 31.76 22.24 12.76 
ARMA(1,2) 55.88 59.38 48.37 39.85 
ARMA(2,1) 55.88 59.38 48.37 38.85 
ARMA(2,2) 28.62 30.41 20.39 11.25 

χ2
0.95(kmax) 
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Monthly Stream flow (1928-1964) of a river;  
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•  Correlogram 
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Fig 10 Partial Autocorrelation Function of flows
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•  Partial Auto Correlation function 
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•  Power Spectrum 
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Model 
name constant φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 θ1 θ2 

ARMA(1,0) -0.097 0.667 
ARMA(2,0) 0.049 0.042 0.044 
ARMA(3,0) -0.111 0.767 -0.148 -0.003 
ARMA(4,0) 0.052 0.042 0.058 0.063 0.044 
ARMA(5,0) 0.055 0.042 0.058 0.063 0.048 0.038 
ARMA(6,0) -0.124 0.764 -0.155 0.034 -0.029 -0.023 -0.021 
ARMA(7,0) 0.056 0.043 0.062 0.065 0.048 0.058 0.075 0.065 
ARMA(8,0) 0.054 0.042 0.060 0.063 0.048 0.058 0.078 0.088 0.061 

ARMA(1,1) -0.131 0.551 0.216 
ARMA(2,1) -0.104 0.848 -0.204 -0.083 
ARMA(3,1) -0.155 0.351 0.165 -0.055 0.418 
ARMA(4,1) -0.083 1.083 -0.400 0.091 -0.060 -0.318 
ARMA(1,2) -0.139 0.526 0.241 0.025 
ARMA(2,2) 378 1980 1160 1960 461 

ARMA(0,1) -0.298 0.594 
ARMA(0,2) -0.297 0.736 0.281 
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Sl. No Model Mean Square Error Likelihood value 
1 ARMA(1,0) 0.65 93.33 
2 ARMA(2,0) 0.63 97.24 
3 ARMA(3,0) 0.63 96.44 
4 ARMA(4,0) 0.63 96.14 
5 ARMA(5,0) 0.63 95.50 
6 ARMA(6,0) 0.63 94.66 
7 ARMA(7,0) 0.63 93.80 
8 ARMA(8,0) 0.60 101.47 
9 ARMA(1,1) 0.63 97.11 

10 ARMA(2,1) 0.63 96.25 
11 ARMA(3,1) 0.63 95.39 
12 ARMA(4,1) 0.63 95.39 
13 ARMA(1,2) 0.63 96.16 
14 ARMA(2,2) 0.63 95.13 
15 ARMA(0,1) 0.73 67.74 
16 ARMA(0,2) 0.66 89.28 
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Model Test t 
η(e) t(α, N–1)  

ARMA(1,0) 1.78672E-05 1.645 
ARMA(2,0) 6.0233E-06 1.645 
ARMA(3,0) 4.82085E-05 1.645 
ARMA(4,0) -3.01791E-05 1.645 
ARMA(5,0) 6.84076E-16 1.645 
ARMA(6,0) 3.0215E-05 1.645 
ARMA(7,0) -6.04496E-06 1.645 
ARMA(8,0) 5.54991E-05 1.645 
ARMA(1,1) -0.001132046 1.645 
ARMA(2,1) -0.002650292 1.645 
ARMA(3,1) -0.022776166 1.645 
ARMA(4,1) 0.000410668 1.645 
ARMA(1,2) -0.000837092 1.645 
ARMA(2,2) 0.002631505 1.645 
ARMA(0,1) 0.022950466 1.645 
ARMA(0,2) 0.019847826 1.645 

Significance of residual 
mean: 
 
 
 
 
     is the estimate of the 
residual mean 
     is the estimate of the 
residual variance 
 
 
 
• 	  All	  models	  pass	  the	  test	  

( )
1/2

1/2ˆ
N eeη
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Sakleshpur  Annual Rainfall Data (1901-2002) 
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Correlogram 
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PAC function 
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Model  Likelihood 
AR(1)  9.078037 
AR(2)  8.562427 
AR(3)  8.646781 
AR(4)  9.691461 
AR(5)  9.821681 
AR(6)  9.436822 

ARMA(1,1)  8.341717 
ARMA(1,2)  8.217627 
ARMA(2,1)  7.715415 
ARMA(2,2)  5.278434 
ARMA(3,1)  6.316174 
ARMA(3,2)  6.390390 
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•  ARMA(5,0) is selected with highest likelihood 
value 

•  The parameters for the selected model are as 
follows 
φ1 = 0.40499 
φ2 = 0.15223 
φ3 = -0.02427 
φ4 = -0.2222 
φ5 = 0.083435 
Constant = -0.000664 
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•  Significance of residual mean 

Model η(e) t0.95(N ) 
ARMA(5,0) 0.000005 1.6601 



Significance of periodicities: 
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Periodicity η F0.95(2,239 ) 

1st  0.000 3.085 

2nd  0.00432 3.085 

3rd  0.0168 3.085 

4th  0.0698 3.085 

5th  0.000006 3.085 

6th  0.117 3.085 
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•  Whittle’s white noise test: 

Model η F0.95(2, N-2 ) 
ARMA(5,0) 0.163 1.783 
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Model MSE  
AR(1)  1.180837  
AR(2)  1.169667  
AR(3)  1.182210  
AR(4)  1.168724  
AR(5)  1.254929  
AR(6)  1.289385  

ARMA(1,1)  1.171668  
ARMA(1,2)  1.156298  
ARMA(2,1)  1.183397  
ARMA(2,2)  1.256068  
ARMA(3,1)  1.195626  
ARMA(3,2)  27.466087  
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•  ARMA(1, 2) is selected with least MSE value for 
one step forecasting 

•  The parameters for the selected model are as 
follows 
φ1 = 0.35271 
 
θ1 = 0.017124 
θ2 = -0.216745 
Constant = -0.009267 
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•  Significance of residual mean 

Model η(e) t0.95(N ) 
ARMA(1, 2) -0.0026 1.6601 



Significance of periodicities: 
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Periodicity η F0.95(2,239 ) 

1st  0.000 3.085 

2nd  0.0006 3.085 

3rd  0.0493 3.085 

4th  0.0687 3.085 

5th  0.0003 3.085 

6th  0.0719 3.085 
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•  Whittle’s white noise test: 

Model η F0.95(2, N-2 ) 
ARMA(1, 2) 0.3605 1.783 



Markov	  Chains	  



 
•  A Markov chain is a stochastic process with the 

property that value of process Xt  at time t depends 
on its value at time t-1 and not on the sequence of 
other values (Xt-2 , Xt-3,……. X0) that the process 
passed through in arriving at Xt-1. 
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Markov Chains 

[ ] [ ]1 2 0 1, ,.....t t t t tP X X X X P X X− − −=

Single step Markov 
chain	  



•  This conditional probability gives the probability at 
time t will be in state ‘j’, given that the process 
was in state ‘i’ at time t-1. 

•  The conditional probability is independent of the 
states occupied prior to t-1. 

•  For example, if Xt-1 is a dry day, we would be 
interested in the probability that Xt is a dry day or a 
wet day. 

•  This probability is commonly called as transition 
probability 
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Markov Chains 

1t j t iP X a X a−⎡ ⎤= =⎣ ⎦



•  Usually written as      indicating the probability of a 
step from ai to aj at time ‘t’. 

•  If  Pij is independent of time, then the Markov chain 
is said to be homogeneous. 
     
     i.e.,                      v    t and  τ 
 
 the transition probabilities remain same across 
time 
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Markov Chains 
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Transition Probability Matrix(TPM): 
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Markov Chains 
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•  Elements in any row of TPM sum to unity  
•  TPM can be estimated from observed data by 

enumerating the number of times the observed 
data went from state ‘i’ to ‘j’ 

•  Pj 
(n) is the probability of being in state ‘j’ in time 

step ‘n’. 

59	  

Markov Chains 
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•  pj
(0) is the probability of being in state ‘j’ in period    

t = 0. 

•  If p(0) is given and TPM is given 
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Markov Chains 
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Markov Chains 
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P P P P

p p p p P

P P P

⎡ ⎤
⎢ ⎥
⎢ ⎥

⎡ ⎤ ⎢ ⎥= ⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

( ) ( ) ( )0 0 0
1 11 2 21 1.... m mp P p P p P= + + + …. Probability of 

going to state 1 

( ) ( ) ( )0 0 0
1 12 2 21 2.... m mp P p P p P= + + + …. Probability of 

going to state 2 
And so on… 



Therefore 
 
 
 
 
 
 
 

In general, 
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Markov Chains 

( ) ( ) ( ) ( )1 1 1 1
1 2 1

. . m m
p p p p

×
⎡ ⎤= ⎣ ⎦

( ) ( )

( )

( )

2 1

0

0 2

p p P

p P P

p P

= ×

= × ×

= ×

( ) ( )0n np p P= ×



•  As the process advances in time, pj
(n) becomes less 

dependent on p(0) 
•  The probability of being in state ‘j’ after a large 

number of time steps becomes independent of the 
initial state of the process. 

•  The process reaches a steady state at large n 

•  As the process reaches steady state, the 
probability vector remains constant 
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Markov Chains 

np p P= ×



Example – 1 
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Consider the TPM for a 2-state first order homogeneous 
Markov chain as  
 
 
 
 
State 1 is a non-rainy day and state 2 is a rainy day 
Obtain the  
1.  probability of day 1 is non-rainfall day / day 0 is rainfall day  
2.  probability of day 2 is rainfall day / day 0 is non-rainfall day  
3.  probability of day 100 is rainfall day / day 0 is non-rainfall 

day 

0.7 0.3
0.4 0.6

TPM ⎡ ⎤
= ⎢ ⎥
⎣ ⎦



Example – 1 (contd.) 
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1.  probability of day 1 is non-rainfall day / day 0 is 
rainfall day  

The probability is 0.4 
 

2.  probability of day 2 is rainfall day / day 0 is non-
rainfall day  

0.7 0.3
0.4 0.6

TPM ⎡ ⎤
= ⎢ ⎥

⎣ ⎦

No rain 

rain 

No rain rain 

( ) ( )2 0 2p p P= ×



Example – 1 (contd.) 

66	  

   The probability is 0.39 
 

3.  probability of day 100 is rainfall day / day 0 is non-
rainfall day  

( ) [ ]

[ ]

2 0.7 0.3
0.7 0.3

0.4 0.6

0.61 0.39

p ⎡ ⎤
= ⎢ ⎥

⎣ ⎦

=

( ) ( )0n np p P= ×



Example – 1 (contd.) 
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2

4 2 2

8 4 4

16 8 8

0.7 0.3 0.7 0.3 0.61 0.39
0.4 0.6 0.4 0.6 0.52 0.48

0.5749 0.4251
0.5668 0.4332

0.5715 0.4285
0.5714 0.4286

0.5714 0.4286
0.5714 0.4286

P P P

P P P

P P P

P P P

= ×

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤
= × = ⎢ ⎥

⎣ ⎦

⎡ ⎤
= × = ⎢ ⎥

⎣ ⎦

⎡ ⎤
= × = ⎢ ⎥

⎣ ⎦



Example – 1 (contd.) 

68	  

Steady state probability 

    

[ ]

[ ]

0.5714 0.4286
0.5714 0.4286

0.5714 0.4286

0.5714 0.4286

np p P= ×

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

=

 
 
 
For steady state, 

[ ]0.5714 0.4286p =


