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Summary of the previous lecture

« Box-Jenkins time series models
 Differencing the time series
‘B’ Operator



ARIMA Models

1. Identification of the model structure:

« |dentify if the series is stationarity.

* Plot correlogram (correlogram shows a rapid
decay for a stationary series)

 Remove non-stationarity if any by differencing/
standardization.

* Obtain the order of AR and MA components of
the model.

 PAC determines the order of the AR process



ARIMA Models

For example, AR(1) process:
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ARIMA Models

AR(2) process:

Decays in sinusoidal
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Xt Px ' wave form
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ARIMA Models

Another AR(2) process:
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ARIMA Models

« Behavior of AR process:

« Decaying auto correlation function (either
exponentially or in a dampened sine wave)

« Order of AR determined by the significant
PAC’s



ARIMA Models

MA(1) process:
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ARIMA Models

MA(2) process:
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ARIMA Models

« Behavior of MA process:

« The order of MA is determined by the number
of significant auto correlations

« Decaying PAC function (either exponentially or
iIn @ dampened sine wave)



ARIMA Models

2. Parameter estimation and calibration:

« Algorithms are available for parameter estimation

« e.g., Marquadt’ s algorithm, available in most
statistical tool boxes, “armax” toolbox in
Matlab.

« For some algorithms, initial values of the
parameters need to be supplied based on the

Yule-Walker equations

« Solve the Yule-Walker equations of order ‘p’ and
give the resulting ¢4, ¢5,..... ¢, as initial values of
the AR parameters.



ARIMA Models

Estimation of initial values of MA parameters:

-0, +60,_,+60, ,+....+0 _0
) 1407 +6; +....+ 6

=0 k>q

Ref: Forecasting methods and applications by Markridakis, Wheelwright, McGee, John
Willey 1978



Example — 1

Obtain MA parameters for r, = 0.37
-0, +60,_,+60, _,+...+0 _.0

Pi = 140+ 4.+ 6

Fork =1,
= _91

1+ 67
Pt /016’12 +06,=0
0.37912 +6,+0.37=0
6 =-0.443

£



Example — 2
Matlab function “armax” syntax:

m = armax(data, orders)

‘data’ : array of timeseries data
orders = [na, Nnc]

na = order of AR parameters
nc = order of MA parameters



Example — 2
For example, for ARMA(1, 2) model,

m_1 2 = armax(datax, [1 2]);

. File Edit View Debug Desktop Window Help N A X
The output is as shown|gz » =& o D, ~ 20 v
(I) = -0.3543 &) M_1_2 <1x0x3 idpoly>
1 .

Discrete-time IDPOLY model: A{q)y(t) = C{g)e(t)

6, = 0.04582 CREES

e _ O 0836 C{q) =1 + 0.04582 g™-1 + 0.08362 q™-2
2 Estimated using ARMAX from data set z

Loss function 0.794217 and FPE 0.80807
Sampling interval: 1

15



ARIMA Models

Model selection:

* Model selection is important in time series analysis
as there are infinitely many possible models

* In general, AR parameters of order up to 6 and MA
parameters of order up to 2 serve the purpose in
most hydrologic applications. The models may be
contiguous or non-contiguous.

A model may be selected by using the following two
criteria from among several candidate models

— Maximum likelihood rule (ML)
— Mean square error (MSE)



ARIMA Models

Maximum likelihood rule:

 Alikelihood value for each of the candidate models
IS evaluated.

* The model with highest likelihood value is chosen.

« The general form of log-likelihood function for the ith
model for a Gaussian process is

_ 27 A specific likelihood function
Li =In (p [Z’ ¢l ] ) " in this general class |

may be approximated as,

Lz' = —Eln((fi)—ni
Ref: Kashyap R.L. and Ramachandra Rao.A, “Dynamic stochastic models from empirical
data”, Academic press, New York , 1976



ARIMA Models

Where L, is the likelihood value,

z is the vector of historical series

@, is the vector of parameters and residual variance
(04,0,,........ ; 01,00y -ennn ; O)

o, Is the residual variance and

n, is the number of parameters

* As the number of parameters increase, the
likelihood value decreases.

 The ML rule selects the models with a small
number of parameters (principle of parsimony)



ARIMA Models

Mean square error (Prediction approach):

« Using a portion of available data (N/2) estimate the
parameters of different models

* Forecast the series one step ahead by using the
candidate models

« Estimate the MSE corresponding to each model

« The model with least value of MSE is selected for
prediction



ARIMA Models

The one step ahead forecast for ARMA(p, q) is

$X, +E¢]

The error for one step ahead forecast is

e =X

r+1 t+1

X —l

LM“@

N

-_‘)(;+1

If the series consists on N observations, the first N/2
observations are used for parameter estimation and N/
2+1 to N are used for error series calculation.



ARIMA Models

The MSE for model is




ARIMA Models

3. Model testing / Validation:

Calibration data Test data

} } | i
X, Xr.2 X1 X X1 XN

First “T" values are used to build the model (say 50%
of the available data) and the rest of data is used to
validate the model.

All the tests are carried out on the residual series only.



ARIMA Models

The tests are performed to examine whether the
following assumptions used in building the model are
valid for the model selection

* The residual series has zero mean

» No significant periodicities are present in the
residual series

* The residual series is uncorrelated

Residual /  \7 ,

Simulated from the model




ARIMA Models

Validation tests are listed here

Significance of residual mean

Significance of periodicities

Cumulative periodogram test or Bartlett’ s test
White noise test

« Whittle’ s test

* Portmanteau test



ARIMA Models

Significance of residual mean:

« This test examine the validity of the assumption
that the error series e(t) has zero mean

« A statistic n(e) is defined as
N1/2E
n(e)=

~1/2

0

Where
e is the estimate of the residual mean
0 is the estimate of the residual variance

Ref: Kashyap R.L. and Ramachandra Rao.A, “Dynamic stochastic models from empirical
data”, Academic press, New York , 1976



ARIMA Models

» The statistic n(e) is approximately distributed as t
(a, N-1), where a. is the significance level at
which the test is being carried out.

 If the value of n(e) < t(a, N-1), then the mean of
the residual series is not significantly different
from zero — series passes the test.



ARIMA Models

Significance of periodicities:

« This test ensures that no significant periodicities
are present in the residual series

* The test is conducted for different periodicities
and the significance of each of the periodicities is
tested.

« A statistic n(e) is defined as

(v-2)
1(e) = 4p,




ARIMA Models

Where vy?= o? + 32
S -

R,
0, Y; Z{t X COS a)k /a’sm(a)kt)}
= 2N cos(wy1) |
HTN A

2 .
B, oY 4 e, sm(a)kt)

t

2mn/w, is the periodicity for which test is being carried
out.



ARIMA Models

» The statistic n(e) is approximately distributed as
F.(2, N-2 ), where a is the significance level at
which the test is being carried out.

* [f the value of n(e) < F_(2, N-2 ), then the
periodicity is not significant.



ARIMA Models

Cumulative periodogram test or Bartlett’ s test :

 This test is also carried out to ensure that no
significant periodicities are present in the residual
series

* This test is conducted to detect the first
significant periodicity in the series.

« If significant periodicity is observed, the first
periodicity is removed and new series is obtained

for which the test is repeated and checked for
periodicity and so on.



ARIMA Models

2 & T2y 2
o {N >e cos(a)kt)} ; {N Ye sm(a)kt)}
k=1,2,...... N/2
c 2
27
=1
Ek = ND 0<gc=t1
2
Vi

The plot of g, vs k is called as cumulative periodogram

Ref: Kashyap R.L. and Ramachandra Rao.A, “Dynamic stochastic models from empirical
data”, Academic press, New York , 1976



ARIMA Models

On the cumulative periodogram two confidence
limits (+A\/(N/2)'2) are drawn

The value of A\ prescribed for 95% confidence limits
Is 1.35 and for 99% confidence limits is 1.65

If all the values of g, lie within the significance band,
there is no significant periodicities in the series.

If a value of g, lies outside the significance band, the
periodicity corresponding to that value of g, is
significant.



Ok

ARIMA Models




ARIMA Models

White noise test (Whittle’ s test):

 This test is carried out to test the absence of
correlation in the series.

* The covariance r, at lag k of the error series e(t)
1 N

V, =—m e .e.
k jj-k
N_k]= +]

* The value of k., Is normally chosen as 0.15N

Ref: Kashyap R.L. and Ramachandra Rao.A, “Dynamic stochastic models from empirical
data”, Academic press, New York



ARIMA Models

* The covariance matrix is

"o " " e
h " h Ve 1
r =|"

nl —

X K

max max



ARIMA Models

« A statistic n(e) is defined as
N (¢

(6= )

nl-1\ p,

Where p, is the lag zero correlation and

b = detI’ ,
' detT

The matrix I',,_; is constructed by eliminating the
last row and the last column from the I',; matrix.



ARIMA Models

» The statistic n(e) is approximately distributed as
F.(n1, N-n1), where a is the significance level at
which the test is being carried out.

* [f the value of n(e) < F_(n1, N-n1 ), then the
residual series is uncorrelated.



ARIMA Models

White noise test (Portmanteau test):

 This test is also carried out to test the absence of
correlation in the series.

* This test also uses the covariance r, defined
earlier.

« A statistic n(e) is defined as
2

n(e)=(v-m)F [ ]

Ref: Kashyap R.L. and Ramachandra Rao.A, “Dynamic stochastic models from empirical
data”, Academic press, New York



ARIMA Models

» The statistic n(e) is approximately distributed as
%, (n1), where a is the significance level at which
the test is being carried out.

« The value of n1 is normally chosen as 0.15N

* If the value of n(e) < %?,(n1), then the residual
series is uncorrelated.



ARIMA Models

Data Generation:
Consider AR(1) model,
X = 04 Xeq + &
¢4 = 0.5 therefore AR(1) model is

X = 0.9X4 + &——Choose e, terms with zero
mean and uncorrelated

Let us choose standard normal deviates



ARIMA Models

Say X, = 3.0

X, = 0.5*3.0 + 0.335
= 1.835

X, = 0.5*1.835 + 1.226
=2.14

And so on...



ARIMA Models

Consider ARMA(1, 1) model,
Xi= 01 Xiq + 01804 + &

¢,=0.5, 6,=0.4 therefore the model is

Standard normal deviates

X;=0.5X_, + 0.4e,, + ¢

N

Choose e, terms as
previous e, and set initial
value as zero



ARIMA Models

Say X, = 3.0

X,=0.5"3.0 + 0.4*0 + 0.667

= 2.167 )

X, = 0.5*2.167 + 0.4*0.667 + 1.04

= 2.39 K

X, =0.5"2.39 + 0.4*1.04 + 2.156

= 3.767
on...

and so



ARIMA Models

Data Forecasting:
Consider AR(1) model,
Xi= 01X t &

Expected value is considered.

E[Xt]=¢1E[XH]+E[et]

X =¢X \
= A Expected value of e, is zero



ARIMA Models

Consider ARMA(1, 1) model,
Xi= 01 Xiq + 01804 + &

E[X]=¢X1 + 084 +0

Error in forecast in the
previous period

¢,=0.5, 6,=0.4 therefore the model is

X, = 0.5X, , + 0.4e,,



ARIMA Models

Say X,=3.0 Initial error assumed to
/ be zero
X, =0.5%x3.0+0.4x0
=1.5
X,=2.38

Errore, =2.8-1.5=1.3

N

X, =05%x2.8+0.4%1.3

=1.92 \

Actual value to be used



ARIMA Models

X;=1.8
Errore; =1.8-1.92=-0.12

X, =0.5x1.8+0.4x(-0.12)
= 0.852

and so on...



Markov Chains

Markov Chains:

Markov chain is a stochastic process with the
property that value of process X, at time t depends
on its value at time t-1 and not on the sequence of
other values (X, , Xi3,.-..... X,) that the process
passed through in arriving at X ;.

PlX, /X X X, |=P[ X, /X, ]

L’Single step Markov
chain



Markov Chains

P[Xt =a, /X, =al.]

The conditional probability gives the probability at
time t will be in state ‘j’, given that the process
was in state ‘i’ at time t-1.

The conditional probability is independent of the
states occupied prior to t-1.

For example, if X, is a dry day, what is the
probability that X, is a dry day or a wet day.

This probability is commonly called as transitional
probability



Markov Chains

P[ X, =a /X, —a] P

e Usually written as Pl.; indicating the probability of a
step from a; to a, at time 't

* If Pyis independent of time, then the Markov chain
Is said to be homogeneous.

i.e., Pt P”’ v tand T

the transitional probabilities remain same across
time



Markov Chains

Transition Probability Matrix(TPM):

t+1—> 1 2 3 : . m
t
2
1 B, B, B B,
2 | B B, B b,
P 3 | B
m _Pml Pm2 Pmm

- mXxXm



Markov Chains

;P. =] ¥]

Elements in any row of TPM sum to unity
(stochastic matrix)

TPM can be estimated from observed data by
tabulating the number of times the observed data

went from state ‘i’ to
P, (" is the probability of being in state j" in the
time step ‘n’.



Markov Chains

- p9is the probability of being in state ‘j° in period

t=0.
(0) _ [0 0 (0) ... Probability
P [pl A ]lxm vector at time 0
" = [ I CA ]1 ... Probabilty
xm vector at time
o

« Letp©is given and TPM is given

o = 05 p



Markov Chains

LETRIN ST 6 n
ETRIN SR B,
=" P P | B
Pml Pm2 Pmm
= pl( )P +p§ )P ....+p,(n0)Pm1 .... Probability of
going to state 1
= P1( )P +p§O)P21 +....+119,(%0)Pm2 .... Probability of

oing to state 2
And so on... JoIns




Markov Chains

Therefore

PM=[p’ )

p(2) _ p(l) % P
=p@xPxP
=p(0)xP2

In general,

o = p0) 5 pr



Markov Chains

As the process advances in time, pj(”) becomes less
dependent on p©

The probability of being in state ‘j’ after a large
number of time steps becomes independent of the
initial state of the process.

The process reaches a steady state ay very large n

p=pxP"

As the process reach steady state, TPM remains
constant



Example — 3

Consider the TPM for a 2-state (state 1 is non-rainfall day
and state 2 is rainfall day) first order homogeneous
Markov chain as

0.7 0.3]

TPM =
[0.4 0.6

Obtain the

1. probability of day 1 is non-rainfall day / day O is
rainfall day

2. probability of day 2 is rainfall day / day 0O is non-
rainfall day

3. probability of day 100 is rainfall day / day O is non-
rainfall day



Example — 3 (contd.)

1. probability of day 1 is non-rainfall day / day O is

rainfall day , ,
No rain rain

Norain[0.7 0.3
TPM = . [ ]
ranto4 0.6

The probability is 0.4

2. probability of day 2 is rainfall day / day O is non-
rainfall day

2 = p0)  p2



Example — 3 (contd.)

=[0.61 0.39]
The probability is 0.39

3. probability of day 100 is rainfall day / day O is non-
rainfall day

2 = p0)  pr



Example — 3 (contd.)

P’=PxP
0.7 037707 037 [0.61 0.39
o4 06|]04 06| 052 048
., ., [0.5749 0.4251]
P =P x P’ =
0.5668 0.4332
. . [0.5715 0.4285]
P8 = P*x Pt =
0.5714 0.4286

I [0.5714 0.4286]

0.5714 0.4286



Example — 3 (contd.)

Steady state probability
p=[0.5714 0.4286]

For steady state,
p=pxP"

- 1[0.5714  0.4286
=[0.5714 0.4286
) “10.5714  0.4286

0.5714  0.4286]



