STOCHASTIC HYDROLOGY

Lecture -10

Course Instructor: Prof. P. P. MUJUMDAR

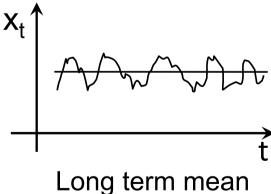
Department of Civil Engg., IISc.

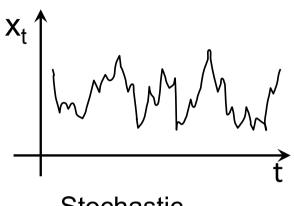
Summary of the previous lecture

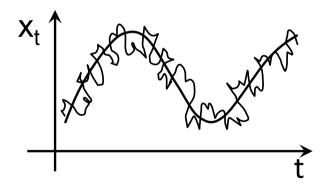
- Data Generation
- Introduction to Time Series Analysis

- Sequence of values of a random variable collected over time
- Discrete time series; Continuous time series
- Realization; Ensemble
- Hydrologic time series composed of deterministic and stochastic components

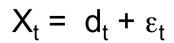
$$X_t = d_t + \varepsilon_t$$

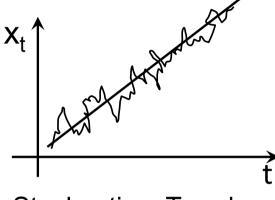




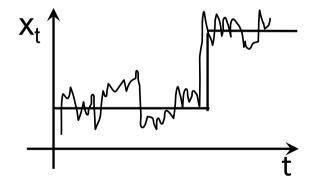


Stochastic + Periodic





Stochastic + Trend



Stochastic + Jump

- Deterministic component is a combination of a long term mean, trend, periodicity and jump.
- Time scale of time series either discrete or continuous
- Discrete time scale: observations at specific times separated by Δt . (eg., average monthly stream flow, annual peak discharge, daily rainfall etc.)
- Continuous time scale: data recorded continuously with time (eg., turbulence studies, pressure measurements)

- The pdf of a stochastic process X(t) is f(x; t)
- f(x; t) describes the probabilistic behavior of X(t) at specified time 't'
- The time series is said to be stationary, if the properties do not change with time.
- $f(x; t) = f(x; t+\tau) + t$
- for stationary time series, pdf of X_t is same as that of X_t
 + τ ¥ t

Time average for a realization

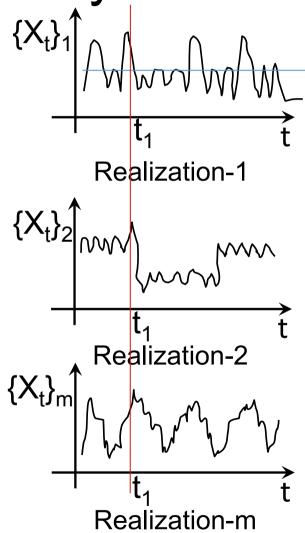
$$\bar{X}_{1} = \frac{\sum_{j=1}^{n} \left\{ X_{j} \left(t \right) \right\}_{1}}{n}$$

n is no. of observations

Ensemble average at time t

$$\overline{X}_{t} = \frac{\sum_{i=1}^{m} X_{i}(t)}{m}$$

m is no. of realizations



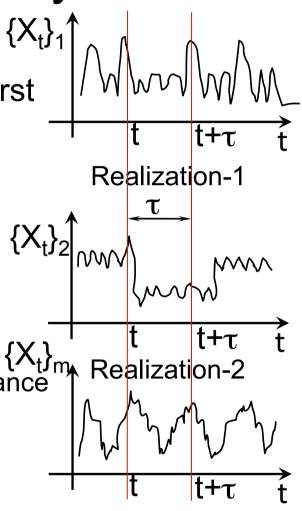
- If $\overline{X}_t = \overline{X}_{t+\tau}$ for all t, then the process is stationary in mean (first order stationary)
- If all the moments up to order 'f' are same for time t and t+τ, ¥ t then the time series is weakly stationary of order 'k'

k = 1 Stationary in mean

k = 2 Stationary in mean & covariance

For a strictly stationary time series,

$$f(x_1) = f(x_2) = \dots = f(x)$$



Auto covariance

$$\gamma_k = \operatorname{cov}(X_t, X_{t+k})$$

$$= E[(X_t - \mu)(X_{t+k} - \mu)]$$

$$\gamma_0 = \sigma_X^2$$

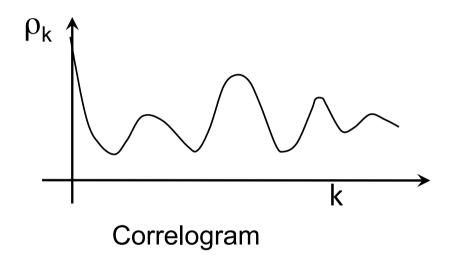
Auto correlation between X_t and X_{t+τ},

$$\rho_k = \frac{\text{cov}(X_t, X_{t+k})}{\sigma_{X_t} \sigma_{X_{t+k}}}$$

$$= \frac{\text{cov}(X_t, X_{t+k})}{\sigma_X^2} = \frac{\gamma_k}{\gamma_0}$$

$$\rho_0 = 1$$

If process is stationary $\sigma_{X_t} = \sigma_{X_{t+k}}$



 Auto correlation indicates the memory of a stochastic process

Auto covariance matrix

$$\Gamma_{n} = \begin{bmatrix} X_{1} & X_{2} & X_{3} & \dots & X_{n} \\ X_{1} & \gamma_{0} & \gamma_{1} & \gamma_{2} & \dots & \gamma_{n-1} \\ X_{2} & \gamma_{1} & \gamma_{0} & \gamma_{1} & \dots & \gamma_{n-2} \\ X_{3} & \gamma_{2} & & & & & \\ \vdots & \vdots & & & & & \\ X_{n} & \gamma_{n-1} & \gamma_{n-1} & & & \gamma_{0} \end{bmatrix}_{n \times n}$$

 Γ_{n} is symmetric and +ve definite matrix

• Dividing the matrix Γ_n by γ_o , we get the auto correlation matrix P_n

$$P_{n} = \frac{\Gamma_{n}}{\gamma_{0}} = \begin{bmatrix} 1 & \rho_{1} & \rho_{2} & \dots & \rho_{n-1} \\ \rho_{1} & 1 & \rho_{1} & \dots & \rho_{n-2} \\ \rho_{2} & & & & & \\ \vdots & & & & & \\ \rho_{n-1} & \rho_{n-2} & \dots & \ddots & 1 \end{bmatrix} \text{n x n}$$

P_n is symmetric and +ve definite matrix

• Because P_n is +ve definite

$$\begin{vmatrix} 1 & \rho_1 \\ \rho_1 & 1 \end{vmatrix} \ge 0$$

$$1 - \rho_1^2 \ge 0$$

$$-1 \le \rho_1 \le 1$$

Sample estimates:

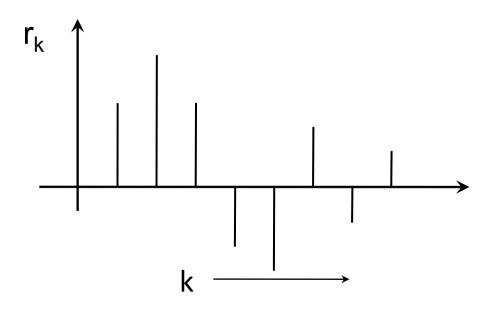
$$\gamma_k = E\left[(X_t - \mu)(X_{t+k} - \mu) \right]$$

$$c_k = \frac{1}{N} \sum_{i=1}^{n-k} (X_t - \overline{X})(X_{t+k} - \overline{X}) \dots \text{ Sample estimate of auto covariance}$$

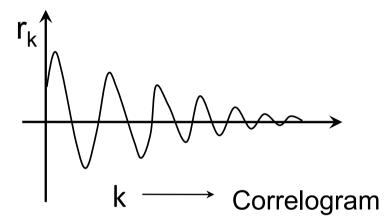
$$r_{k} = \frac{c_{k}}{c_{0}}$$

$$c_{0} = S_{X}^{2}$$

$$variance$$



Auto correlation function (r_k)

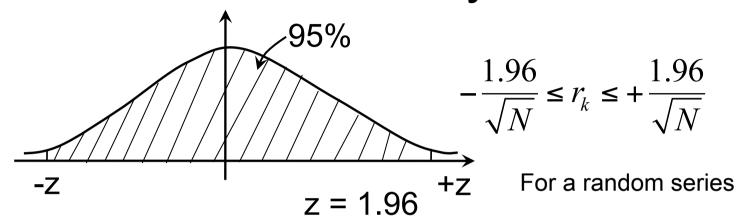


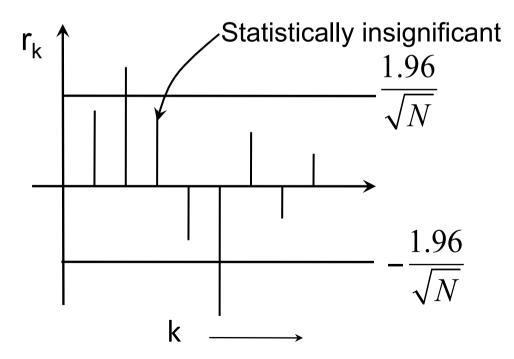
If it is purely stochastic (random) series,

$$\rho_{k} = 0, \quad \forall \quad k = 1, 2, 3, \dots$$

 r_k = may not be zero (because r_k is a sample estimate)

$$r_k: Normal \, Distribution igg(0, rac{1}{\sqrt{N}}igg) \,\,$$
 For a random series





Example-1

Obtain Auto correlation for k=1

S.No.	X_{t}	$(x_t - \overline{x})$	X_{t+1}	$\left(x_{t+1}-\overline{x}\right)$	
1	97	-10.50	110	2.5	-26.25
2	110	2.50	121	13.5	33.75
3	121	13.50	117	9.5	128.25
4	117	9.50	79	-28.5	-270.75
5	79	-28.50	140	32.5	-926.25
6	140	32.50	75	-32.5	-1056.25
7	75	-32.50	127	19.5	-633.75
8	127	19.50	90	-17.5	-341.25
9	90	-17.50	119	11.5	-201.25
10	119	11.50			
Σ	1075				-3293.75

Example-1 (contd.)

mean
$$\bar{x} = 1075/10$$

= 107.5

Variance,
$$c_0 = \frac{\sum_{t=1}^{n} (x_t - \overline{x})^2}{n-1} = \frac{4132.5}{10-1} = 459.2$$

$$c_{1} = \frac{\sum_{t=1}^{n-1} (x_{t} - \overline{x})(x_{t+1} - \overline{x})}{n} = \frac{3293.75}{10} = 329.375$$

$$r_{1} = \frac{c_{1}}{c_{0}} = \frac{329.375}{459.2} = 0.72$$

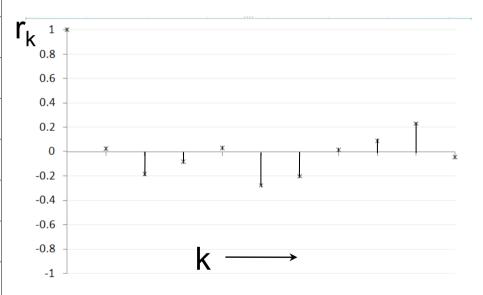
Example-2

Obtain correlogram for 40 uniformly distributed random numbers

S.No.	Data	S.No.	Data	S.No.	Data	S.No.	Data
1	98	11	73	21	25	31	89
2	69	12	36	22	49	32	70
3	30	13	11	23	73	33	36
4	50	14	54	24	38	34	42
5	93	15	31	25	14	35	84
6	1	16	74	26	4	36	82
7	66	17	23	27	87	37	55
8	99	18	88	28	99	38	93
9	76	19	82	29	69	39	2
10	65	20	92	30	57	40	43

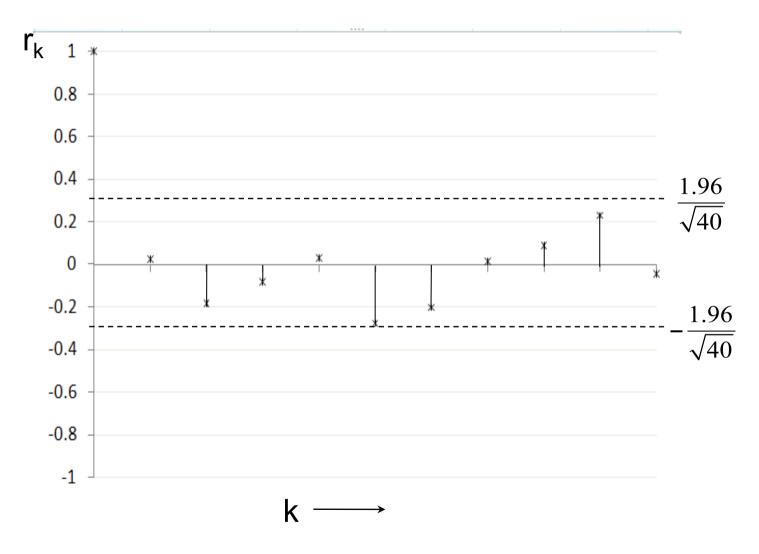
Example-2 (contd.)

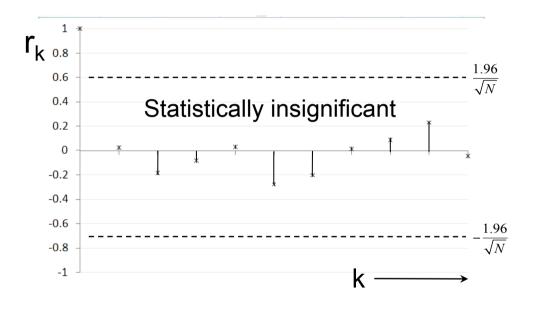
k	r _k
0	1
1	0.0235
2	-0.183
3	-0.0813
4	0.0315
5	-0.277
6	-0.202
7	0.0152
8	0.089
9	0.2304
10	-0.0435

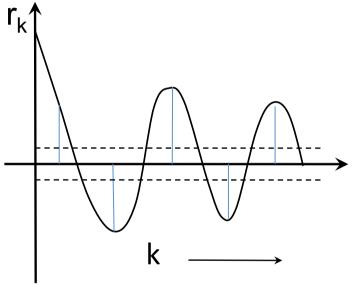


$$\frac{1.96}{\sqrt{N}} = \frac{1.96}{\sqrt{40}} = 0.31$$

Example-2 (contd.)







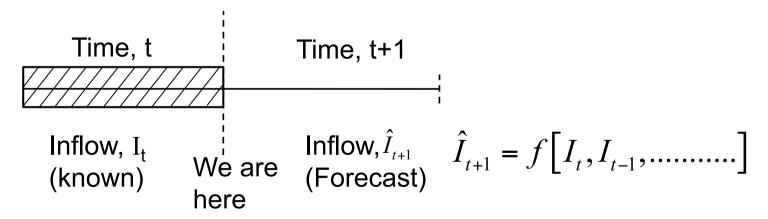
Purely stochastic process

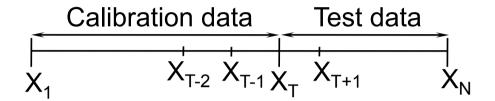
Periodic process

DATA EXTENSION & FORECASTING

e.g., Stream flow records for reservoir planning

Data forecasting





Use first 'T' values to build the model, use rest of data to validate it

 $F_{T+1}, F_{T+2}, \dots, F_N$: forecasts obtained from the model

$$(X_{T+1} - F_{T+1})$$

$$(X_{T+2} - F_{T+2})$$

$$.$$

$$(X_N - F_N)$$
Forecast errors

Method of simple averages: take the average of all the data up to period 'T' as the forecast for period (T+1)

$$\hat{X}_{t+1} = F_{T+1} = \frac{\sum_{t=1}^{T} X_t}{T}$$

$$\hat{X}_{t+1} = F_{T+1} = \frac{\sum_{t=1}^{T+1} X_t}{T}$$

$$\hat{X}_{t+2} = F_{T+2} = \frac{\sum_{t=1}^{T+1} X_t}{T+1}$$
 and so on

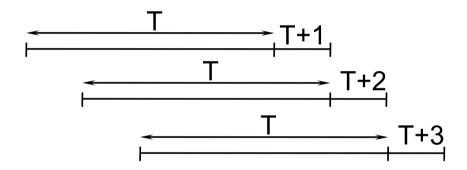
For series with jumps & trends this is not a good procedure

Example-3

Data	Forecast	
105	-	
115	110	
103	107.67	
108	107.75	
120	110.2	
97	108	
110	108.28	
121	109.87	
117	110.67	
79	107.5	

Smoothening technique:

Moving Average (MA)



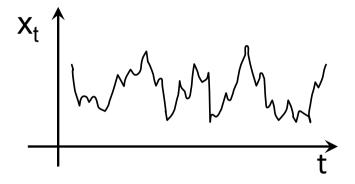
- •As a new observation becomes available, new average is computed by dropping the oldest observation and including the newest one.
- •No. of data points in each average remains constant
- Deals with the latest 'T' periods of known data

Example-4

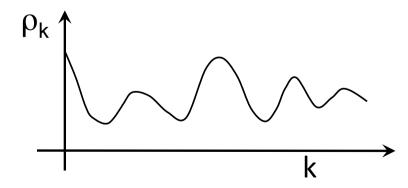
Data		MA (3)	MA (3 x 3)
105		-	
115		-	
103		-	
108		107.67	
120		108.67	
97		110.33	108.89
110		108.33	109.11
121		109	109.22
117		109.33	108.89
79		116	111.44

Purely random stochastic process:

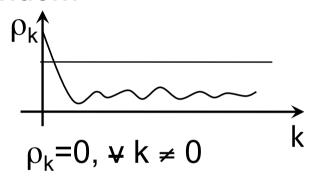
Plot the time series



Plot the correlogram



If the correlogram indicate the time series is purely random

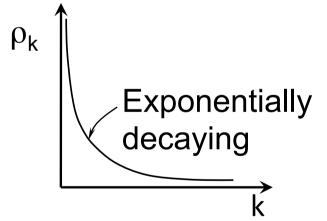


- X_t , X_{t-k} are independent
- Distribution of X_t is known
- Generate X_t using data generation technique to follow given distribution with parameters estimated from sample

- Mainly used for flood peaks, storm intensities etc.
- Not useful for stream flows, seasonal rainfall.
- Most hydrologic time series exhibit serial dependence e.g., X(t) correlated with X(t-τ)

$$\rho_k \cong (\rho_1)k$$

$$\rho_k \rightarrow 0$$
, $k \rightarrow \infty$



For First order Markov process

First order Markov process:

Random component
$$X_{t+1} = \mu_x + \rho_1 (X_t - \mu_x) + \varepsilon_{t+1}$$

Deterministic component

 ϵ ~ Mean 0 and variance σ_{ϵ}^{2}

This model is stationary w.r.t both mean and variance

$$\begin{split} \mathsf{E}[\mathsf{X}_{\mathsf{t}+1}] &= \mathsf{E}[\mu_{\mathsf{x}} + \rho_{1} \, (\mathsf{X}_{\mathsf{t}} - \mu_{\mathsf{x}}) + \, \varepsilon_{\mathsf{t}+1}] \\ &= \mathsf{E}[\mu_{\mathsf{x}}] + \, \rho_{1} \{ \mathsf{E}[\mathsf{X}_{\mathsf{t}}] - \mathsf{E}[\mu_{\mathsf{x}}] \} + \mathsf{E}[\varepsilon_{\mathsf{t}+1}] \\ &= \mu_{\mathsf{x}} + \, \rho_{1} (\mu_{\mathsf{x}} - \mu_{\mathsf{x}}) + 0 \\ &= \mu_{\mathsf{x}} \\ \sigma_{X}^{2} &= E\left[X^{2}\right] - \left(E[X]\right)^{2} \\ &= E\left[\left(\mu_{x} + \rho_{1} \left(X_{t} - \mu_{x}\right) + \varepsilon_{t+1}\right)^{2}\right] - \left(E[X_{t+1}]\right)^{2} \end{split}$$

$$\sigma_{X}^{2} = E \left[\mu_{x}^{2} + \rho_{1}^{2} (X_{t} - \mu_{x})^{2} + \varepsilon_{t+1}^{2} + 2\mu_{x}\rho_{1} (X_{t} - \mu_{x}) + \right. \\ + 2\varepsilon_{t+1}\rho_{1} (X_{t} - \mu_{x}) + 2\mu_{x}\varepsilon_{t+1} \left] - \left(E[X_{t+1}] \right)^{2}$$

$$= E \left[\mu_{x}^{2} \right] + \rho_{1}^{2} E \left[(X_{t} - \mu_{x})^{2} \right] + E \left[\varepsilon_{t+1}^{2} \right] + 2\mu_{x}\rho_{1} E \left[(X_{t} - \mu_{x}) \right] \\ + 2\rho_{1} E[\varepsilon_{t+1}] E[(X_{t} - \mu_{x})] + 2\mu_{x} E[\varepsilon_{t+1}] - \left(E[X_{t+1}] \right)^{2}$$

$$= \mu_{x}^{2} + \rho_{1}^{2} E[(X_{t} - \mu_{x})^{2}] + E[\varepsilon_{t+1}^{2}] + 0 + 0 + 0 - \mu_{x}^{2}$$

$$= \rho_{1}^{2} \sigma_{X}^{2} + \sigma_{\varepsilon}^{2}$$

$$\sigma_{\varepsilon}^{2} = \rho_{1}^{2} (1 - \sigma_{X}^{2})$$

If $X \sim N(\mu_x, \sigma_x^2)$ then $\epsilon \sim N(0, \sigma_\epsilon^2)$

If
$$u \sim N(0, 1)$$
, $u\sigma_{\varepsilon}$ (i.e., $u\sigma_{x}\sqrt{1-\rho_{1}^{2}}$) is $N(0, \sigma_{\varepsilon}^{2})$

$$X_{t+1} = \mu_x + \rho_1 \left(X_t - \mu_x \right) + u \sigma_x \sqrt{1 - \rho_1^2}$$
 Standard normal deviate

First order stationary Markov model Or

Thomas Fiering model (Stationary)

To generate data using First order Markov model,

$$X_{t+1} = \mu_x + \rho_1 (X_t - \mu_x) + u\sigma_x \sqrt{1 - \rho_1^2}$$

- •Known sample estimates of μ_x , σ_x , ρ_1
- •Assume X_1 (normally assumed to be μ_x)
- •Generate values from X₂......
- Generate large set of values and discard first 50-100 values to ensure that the effect of initial value dies down
- •Negative value: retain it for generating next value, set it to zero.

Example-5

$$\mu_x = 50$$
, $\sigma_x = 30$, $\rho_1 = 0.5$

Assume $X_1 = \mu_x = 50$

$$X_{2} = \mu_{x} + \rho_{1}(X_{t} - \mu_{x}) + u\sigma_{x}\sqrt{1 - \rho_{1}^{2}}$$

$$= 50 + 0.5(50 - 50) + (-0.464)30\sqrt{1 - 0.5^{2}}$$

$$= 37.165$$

$$X_3 = 50 + 0.5(37.165 - 50) + (0.335)30\sqrt{1 - 0.5^2}$$

= 52.3

Example-5 (contd.)

$$X_4 = 50 + 0.5(52.3 - 50) + (-0.051)30\sqrt{1 - 0.5^2}$$

= 49.82

$$X_5 = 50 + 0.5(49.82 - 50) + (1.226)30\sqrt{1 - 0.5^2}$$

= 81.76