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Summary of the previous lecture

« Data Generation
 Introduction to Time Series Analysis



Time Series Analysis

Sequence of values of a random variable collected over
time

Discrete time series; Continuous time series
Realization; Ensemble

Hydrologic time series composed of deterministic and

stochastic components N
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Time Series Analysis
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Time Series Analysis

Deterministic component is a combination of a long
term mean, trend, periodicity and jump.

Time scale of time series — either discrete or continuous

Discrete time scale: observations at specific times
separated by At. (eg., average monthly stream flow,
annual peak discharge, daily rainfall etc.)

Continuous time scale: data recorded continuously with
time (eg., turbulence studies, pressure measurements)



Time Series Analysis

The pdf of a stochastic process X(t) is f(x; t)

f(x; t) describes the probabilistic behavior of X(t) at
specified time ‘t’

The time series is said to be stationary, if the properties
do not change with time.

f(x; 1) = f(x; t+7) v t

for stationary time series, pdf of X, is same as that of X,
R



Time Series Analysis

Time average for a realization

n

E{Xf(t)}l

—_ _ ]=1
Xl -

n
n is no. of observations

Ensemble average at time t

) gxm

X, =

m
m IS no. of realizations

{Xih

hoNoN
WYYV WA
>
4 t
alization-1
A
{Xt}Z N\]\NW
t, t
A alization-2
{Xt}m WM\,\M
t, {

Realization-m



Time Series Analysis

5% {XH]
« If X, =X, forallt, then the MMW
process is stationary in mean (first
order stationary) t [+t ¢t
 If all the moments up to order ‘f’ Realization-1
are same for time t and t+t, ¥ t A T
then the time series is weakly X NW\/L/W
stationary of order ‘K’ \/\W
k =1 Stationary in mean X2 t t+t ¢
k = 2 Stationary in mean & covariancterm Realization-2
* For a strictly stationary time WWW
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Time Series Analysis

 Auto covariance
Y. = cov(Xt,XHk)
=FE [(Xt _fu)(XHk _1“)]
2

Yo =0y

« Auto correlation between X, and X,

cov(Xt,XHk)
Pr = .
xX,vYX, : :
‘ If process is stationary
~ cov(Xt,XHk)_ V. Oy =0y
= . =
Oy Yo

Py =1



Time Series Analysis
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Correlogram

« Auto correlation indicates the memory of a
stochastic process



Time Series Analysis

 Auto covariance matrix

X, X, Xy . . X

X [V% " V. - - Ve

X | Yo Vi - - Vi
R R

Xn _}/n—l }/n—l yO ln xXn

', is symmetric and +ve definite matrix



Time Series Analysis

« Dividing the matrix I',, by y,, we get the auto

correlation matrix P,

L Y 2
I Y R O
Pn=rn _ 1%
Yo
_IOn—l pn—2 1

P, is symmetric and +ve definite matrix

inxn



Time Series Analysis

« Because P, is +ve definite

I p
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1-0° =0
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Time Series Analysis

« Sample estimates:
Vi = E [(Xt _M)(ka _1“)]

n-k
¢, = iE(Xz —)_()(XHk _)_() ..... Sample estimate
N 4 of auto covariance
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Time Series Analysis

 Auto correlation function (r,)

/\/\{\/\/\/\f\ N
A

kK — Correlogram

M

If it is purely stochastic (random) series,
pk=0a ¥ k=1,2,3, ........
r, = may not be zero (because r, is a sample estimate)

T 1
v, © Normal Dzsmbutzon(o,— For a random series
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Time Series Analysis
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Obtain Auto correlation for k=1

Example-1

S.No. X (x,-%) Xer | (x,-%) Ezl—f))_:;
1 97 -10.50 110 2.5 -26.25
2 110 2.50 121 13.5 33.75
3 121 13.50 117 9.5 128.25
4 117 9.50 79 -28.5 -270.75
3 79 -28.50 140 32.5 -926.25
6 140 32.50 75 -32.5 -1056.25
7 75 -32.50 127 19.5 -633.75
8 127 19.50 90 -17.5 -341.25
9 90 -17.50 119 11.5 -201.25
10 119 11.50
)) 1075 -3293.75




Example-1 (contd.)

mean X = 1075/10
=107.5

n

—\2
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Variance, c, = = =459.72
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== 1 3293'75 =329.375 ,\/
n 10 3 g
yd
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Example-2

Obtain correlogram for 40 uniformly distributed random
numbers

S.No. Data  S.No. | Data S.No. Data S.No. Data
1 08 11 73 21 25 31 89
2 69 12 36 22 49 32 70
3 30 13 11 23 73 33 36
4 50 14 94 24 38 34 42
3 93 15 31 25 14 35 84
6 1 16 74 26 4 36 82
7 66 17 23 27 87 37 55
8 99 18 88 28 99 38 93
9 76 19 82 29 69 39 2

10 65 20 92 30 57 40 43
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Example-2 (contd.)
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DATA EXTENSION &
FORECASTING



Data Extension & Forecasting

e.g., Stream flow records for reservoir planning

. Available Extension of
: data : data l
1970 2010 2040
Data forecasting
Time, t i Time, t+1
S |
LS .
Inflow, I, Inflow, /.., | = f[1 Y S
(known) Weare (porecasty f[ oo

here



Data Extension & Forecasting

Calibration data Test data

} } | i
X, Xr.2 X1 X; X141 XN

Use first ‘T’ values to build the model, use rest of data to
validate it

FroFrog coeeennt F\ : forecasts obtained from the model

_ Forecast errors




Data Extension & Forecasting

Method of simple averages: take the average of all the

data up to period ‘T’ as the forecast for period (T+1)
T

Xt
O _ — t=1 } t
Xt+1 — FT+1 T 1 e T T+1
T+1 |
EXt 1 .............. T T+1 T+2
X, ,=F =& and so on
T+1

For series with jumps & trends this is not a good
procedure



Example-3

Data Forecast
105/ -
115/ 110
103 | 107.67
108 - 107.75
120 110.2
97 108
110 108.28
121 109.87
117 110.67
79 107.5




Data Extension & Forecasting

Smoothening technique:
Moving Average (MA)
T

IT+1 |
T T+2

T T+3

*As a new observation becomes available, new average is

computed by dropping the oldest observation and
Including the newest one.

*No. of data points in each average remains constant
Deals with the latest ‘T’ periods of known data



Example-4

Data MA (3) MA (3 x 3)
105 -
115 -
103 | - .
108 107.67
120 T\ 108.67
97 N 110.33 108.89
110 108.33 109.11
121 109 109.22
117 109.33 108.89
79 116 111.44




Data Generation — Serially Correlated
Data

Purely random stochastic process:

A
X

Plot the time series W\M/\//

Plot the correlogram




Data Generation — Serially Correlated
Data

If the correlogram indicate the time series is purely

random
A

Pk
\
N\

P=0,¥k=0

>
k

« X, X are independent
* Distribution of X, is known

* Generate X, using data generation technique to follow
given distribution with parameters estimated from
sample



Data Generation — Serially Correlated
Data

« Mainly used for flood peaks, storm intensities etc.

* Not useful for stream flows, seasonal rainfall.

* Most hydrologic time series exhibit serial dependence
e.g., X(t) correlated with X(t-ls)

Pk

= K
Pk = (P1) Exponentially

decaying

pk—>0,k—>oo N

k
For First order Markov process




Data Generation — Serially Correlated
Data

First order Markov process:
/Random component
Xt+1 = Uy +p1 (Xt — Uy ) t €141

~—

Deterministic component

¢ ~ Mean 0 and variance 6,2

This model is stationary w.r.t both mean and variance



Data Generation — Serially Correlated
Data

E[Xi1] = Eluy +p1 (X =0y ) + £144]
= E[u, I+ p{EDXd — Elu, I} + E[gg]
= Uy + P4y — 1) + 0
= Uy
oy = E[x*]-(E[x])

:(lle + 0 (Xt _ﬂx)"' vl )2] _(E[Xz+1])2




Data Generation — Serially Correlated
Data

oy =E[w+pl (X, - ) +ely+ 20, (X, - p)+
+26,,0, (X, -, )+ 206, ] (E[ X, ])
= E[u ]+ pE|(X, - ) |+ E[el ]+ 2up B [(X, - )
+20,E[e, JE[(X, - )]+ 20 E[ e, ]- (E[ X, ])
= i +p12E[(Xt—yx)2]+E[gf+l]+0+0+O—/,¢j
=P, 0y +0,

ol = p} (1-0% )



Data Generation — Serially Correlated
Data

If X ~ N(u,, 0,%) then ¢ ~ N(0, 6,?)
If u~N(0, 1), uo, (i.e., Uuo, 1—,012) is N(0, 0,2)

Xt+1 =1ux+pl(Xt_lux>+uax 1_1012

N\

Standard normal deviate

First order stationary Markov model
Or
Thomas Fiering model (Stationary)



Data Generation — Serially Correlated
Data

To generate data using First order Markov model,

Xt+1 =1ux+p1(Xt _lux)+uox 1_p12

*Known sample estimates of u,, o,, p;
*Assume X, (normally assumed to be u,)
*Generate values from X,.........

*Generate large set of values and discard first 50-100

values to ensure that the effect of initial value dies
down

*Negative value: retain it for generating next value, set
it to zero.



Example-5
u, =50, o, =30, p, =0.5

Assume X, = u, = 50

X2= 1ux+p1(Xt_lux)+qu 1_p12
=50+0.5(50-50)+(-0.464)30v1-0.5
= 37.165

X3 =50+0.5(37.165-50)+(0.335)30v1-0.5"
=52.3



Example-5 (contd.)

X, =50+0.5(52.3-50)+(-0.051)30v1-0.5"
= 49.82

X5 =50+0.5(49.82-50)+(1.226)301-0.5’
=81.76



