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Summary of the previous lecture

 Parameter estimation

— Method of maximum likelihood
» Correlation coefficient
« Simple Linear Regression



DATA GENERATION



Data Generation

Necessity :
o L
1 Length of historical record
o L

Economic life of the project

3. Use of historical record alone gives no idea of the
risks involved.

4. Exact pattern of flows during the historical period is
extremely unlikely to recur during the economic life of

the system.



Data Generation

* Motivation for the Generating Models :

« Statistical Regularity of Flows :

[ \\ SN\ SRS » Mean Flow

Flow | N N/ -

Time
Unless drastic changes in Unlikely
the basin occur, flow tend to x X
maintain their statistical UNJ
distributions over a long {— O\V(\U/\“’“

period of time.

History provides a valuable clue to the future




Data Generation

* Persistence

Tendency of the flows to follow the trend of immediate past.

[Low flows follow low flows and high flows follow high flows].

Generating Models: Reproduce the statistical distributions and
persistence of historical flows

Important statistics normally preserved by generating models :

Mean ..................ll. Average flow
« Std. Deviation.................. Variability of flows
* Correlation Coefficient....... Dependence on previous flows and/

or other hydrologic variables (Rainfall)



Data Generation

» Given a distribution, to generate data belonging to that
distribution

A

Randomly picked up
values of F(y) follow a F(y)

uniform distribution u(0, 1)

Y

A
Choose a random F(y) from f(u)

uniform distribution, get
corresponding .




Data Generation

F(y)=[fady

Y
F(y)=R, = [f()dy
R,: uniformly distributed random no.s in the interval (0,1)

Most scientific programs have built-in functions for
generating uniformly distributed random numbers.



Data Generation

An algorithm for random number (R,) generation:
X=(a+bX._,) Modulo M

{X//M} are the required random numbers

m Modulo n =
eg,M=10,a=5b=3 Remainder of (m/n)
Let X, = 2, then X, = (3"2+5) Modulo 10

= 11 Modulo 10
=1
X, =(3*1+5) Modulo 10
= 8 Modulo 10
=8



Data Generation

X, =(3*8+5) Modulo 10 X,
= 29 Modulo 10
=9

(3*9+5) Modulo 10
32 Modulo 10
2

2 1 8 9 2

The random numbers are 10°10°10°10°10 """

« Pseudo random numbers

« |f Mis large, then the repetition of numbers occur
after a large set is generated.



Data Generation

Exponential distribution:

fly) = A ey A >0
Fly)=1-e™
R, =1—-eM

u

1-R, =eW

Ru = e\
INR, =-AYy
InR,
y —_—



Example-1

Generate 10 values from exponential distribution with A = 5

S.No. R. y
1 0.026 0.729932
2 0.85 0.032504
3 0.654 0.08493
4 0.805 0.043383
5 0.205 0.316949
6 0.957 0.00879
7 0.035 0.670481
8 0.285 0.251053
9 0.996 0.000802
10 0.549 0.119931
) 2.258755

... generated
values



Data Generation

Analytic inverse transform not possible for some
distributions (eg., Normal distribution, Gamma
distribution)

Numerically generated tables of standard normal
deviates (Ry) available

Given R, data is generated by

y = oRy* u
Most scientific programs have built-in functions to
generate standard normal deviates (Ry) .



Example-2

Generate 10 values from N(10, 152)

S.No. RN y

1 0.335 | 15.025
2 -0.051 | 9.235
3 1.226 | 28.39
4 -0.642 | 0.37

5 0.377 | 15.655
6 2156 | 42.34
7 0.667 | 20.005
8 -1.171 | -7.565
9 0.28 14.2

10 0.069 | 11.035
) 148.69

y = oRy* u

15 Ry +10
7 =14.869

2 =191.65
13.8

<
I

i

o
o

Ry obtained from: Statistical methods in Hydrology by C.T.Haan lowa State University Press

1994 Table No.-E.11
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Data Generation

Gamma Distribution:
A{nxn—le—ﬂx
r(n)

Gamma variate with integer values of nj can be shown to be the sum of
1 exponential variates each with parameter A\)

Ui
L —lenRui

A

_EIHR% —(lnRul+lnRu2)
A A

f(x)= x,A,n>0

(for integer values of 1)




Example-3

Generate 10 values formn=2and A =3

Ji
S.No.| R R y -y InR,
1 | 0.376 | 0.005 | 2.092 Y 1
2 | 0.077 | 0.959 | 0.869
3 | 0.323 | 0.216 | 0.888 —(ln R, +InR, )
4 | 0.773 | 0.544 | 0.289 V= 1
5 | 0.24 | 0.073 | 1.348
6 | 0. . . _ 8.092
0.597 | 0.631 | 0.325 o _ 0.809
7 | 0.879 | 0.614 | 0.206 10
8 | 0.942 | 0.563 | 0.211 5 =1.95
9 | 0213 | 0.48 | 0.76 A
10 | 0.325 | 0.112 | 1.104 A=2.41
= 8.092
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TIME SERIES ANALYSIS



Time Series Analysis

Sequence of values of a random variable collected over
time is time series.

Discrete time series: measured at discrete time
Intervals

Continuous time series: recorded continuously with time
Single time series : A realization
Ensemble: collection of all realizations

X, Kepoeeeeees {X¢hm



Time Series Analysis

A

{Xt}1 /\/\/\/\/—\f\[\[\ﬂ/\/\/\/
>
Realization-1 t
Ensemble:
x3] collection of all realizations
. W {X1, Xtpeennn {X¢m
>

Realization-2 t

A

e VATLYY

Realization-m

>
t



Time Series Analysis

» Hydrologic time series composed of deterministic and
stochastic components

A
X )
t ¢ O

A AN N
VAR R oY \ 0 Q\o‘V

>
t

Long term mean

Xi= d;+ g



Time Series Analysis

X¢ ] X, 1
>
t t
Stochastic Stochastic + Trend

X, 1 X1 fo b
r’\.nM

AT
>
e 1

Stochastic + Periodic Stochastic + Jump

X = d;+ g




Time Series Analysis

Deterministic component is a combination of a long
term mean, trend, periodicity and jump.

Time scale of time series — either discrete or continuous

Discrete time scale: observations at specific times
separated by At. (eg., average monthly stream flow,
annual peak discharge, daily rainfall etc.)

Continuous time scale: data recorded continuously with
time (eg., turbulence studies, pressure measurements)



Time Series Analysis

The pdf of a stochastic process X(t) is f(x; t)

f(x; t) describes the probabilistic behavior of X(t) at
specified time ‘t’

The time series is said to be stationary, if the properties
do not change with time.

f(x; t) = f(x; t+1) v t

for stationary series, pdf of X, is same as X,, .



Time Series Analysis

A
Time average for a realization X N [\ N N
. FWIWUV VW
E {Xf (t)}l t f
X, =2 1 t
1 = N Realization-1

n is no. of observations N

. {Xt}2 WYV
Ensemble average at time t

>

) gxm

. A R
Xt= {Xtm ©

m IS no. of realizations

t, t

alization-2

. TR

Re

>
t, t
alization-m



Time Series Analysis

. )_(t = X, _for all values of t and r, X4l

+7

then the process is stationary in
mean (first order stationary)

« If all the moments up to order ‘f
are same for time t and t+, then

the time series is weakly {X},

stationary of order ‘k’
k =1 Stationary in mean

k = 2 mean & covariance are same

* For a strictly stationary time
series,

A

Pl

A

t t+t f
Realization-1
T

N\WLWW

>

A

t t+v t
Realization-2

i YAV Yay

>
t t+r ¢t

Realization-m




Time Series Analysis

 Auto covariance
Y. = cov(Xt,XHk)
=FE [(Xt _fu)(XHk _1“)]
2

Yo =0y

« Auto correlation between X, and X,,.,

cov(Xt,XHk)
Pr = .
xX,YXx, : :
‘ If process is stationary
~ cov(Xt,XHk)_ V. Oy =0y
- 2
Oy Yo

Py =1



Time Series Analysis

Pk 4

\ A~

k

Correlogram

« Auto correlation indicates the memory of a
stochastic process



Time Series Analysis

 Auto covariance matrix

X, X, Xy . . X
X [ 7% " V2 - - Ve
X | Y Yo V1 - - Vi
] R
Xn _yn—l }/n—l 7/0 i

', iIs symmetric and +ve definite matrix



Time Series Analysis

 Dividing the matrix by y,,

L R S S
I I Y R
Pn=rn _| P
Yo
IR N

P is symmetric and +ve definite matrix



Time Series Analysis

« Because P, is +ve definite

I p
o1
1-0° =0

> ()

-l=p, =1



Time Series Analysis

« Sample estimates:

o=~k [(Xt _M)(XHk . ﬂ)]

n—k B .
¢, = %2(}@ -X)(X,,, - X)

= Sk

7 = A
k r
C, k




Time Series Analysis

 Auto correlation function (r,)
Mk

/\/\{\/\/\/\f\ N
VoV

k —— Correlogram

If it is purely stochastic (random) series,
pk=0a ¥ k=1,2,3, ........
r, = may not be zero (because r, is a sample estimate)

1
v, Normal Distribution (O, —)

JN



Time Series Analysis

95%
1y o 196
// JN T UN
>

"z 2=1.96 ¢

1.96

N
|T ||)N

| |
1.96

JN

I A /Statistically insignificant




Obtain Auto correlation for k=1

Example-4

S.No. X (x,-%) Xer | (x,-%) Ezl—f))_:;
1 97 -10.50 110 2.5 -26.25
2 110 2.50 121 13.5 33.75
3 121 13.50 117 9.5 128.25
4 117 9.50 79 -28.5 -270.75
3 79 -28.50 140 32.5 -926.25
6 140 32.50 75 -32.5 -1056.25
7 75 -32.50 127 19.5 -633.75
8 127 19.50 90 -17.5 -341.25
9 90 -17.50 119 11.5 -201.25
10 119 11.50
)) 1075 -3293.75




Example-4 (contd.)

mean X = 1075/10
=107.5

n

—\2
l(xf_x) 41325

Variance, c, = = =459.72
n-1 10-1
n— 1
t+1
_£ 1 3293.75 _ 1309375
n 10
= G _ 329.375 _0.7?

¢, 4592



08 +

06 4

04 4

0.2

0.2 +

-04

-06

-08 -

Purely stochastic process

BB

_1.96

JN

Periodic process
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DATA EXTENSION &
FORECASTING



Data Extension & Forecasting

e.g., Stream flow records for reservoir planning

. Available :  Extension of |
: data : data :
1970 2010 2040
Data forecasting
Time, t i Time, t+1
S !
[ LS .
Inflow, I, Inflow, 1,
(known) Weare (rorecast)
here

ra

L= flL 1 s |+ Random component



Data Extension & Forecasting

Calibration data Test data

} } | i
X, Xr.2 X1 X; X141 XN

Use first ‘T’ values to build the model, use rest of data to
validate it

Froqg Froo coonenit, F\ forecasts obtained from the model

_ Forecast errors




Data Extension & Forecasting

Method of simple averages: take the average of all the
data in the calibration data as the forecast for period (T+1)

T
A 2%
_ =

r+1 T+1 T
T+1
> X
X, ,=F =& and so on
T+1

For jumps, trends this is not a good procedure



Example-6

Data Forecast
105)| -
115 - 110
103 || 107.67
108 | - 107.75
120 110.2
97 108
110 108.28
121 109.87
117 110.67
79 107.5




Data Extension & Forecasting

Smoothening technique:
Moving Average (MA)
T

kb
T 1 T+2I

*As new observation is available, new average is
computed by dropping the oldest observation and
iIncluding the newest one.

*No. of data points in each average remains constant
Deals with the latest ‘T’ periods of known data



Example-7

Data MA (3) MA (3, 3)
105 -
115 -
103 K -
108 107.67
120 T\ 108.67
97 N 110.33 108.89
110 108.33 109.11
121 109 109.22
117 109.33 108.89
79 116 111.44







