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Summary	
  of	
  the	
  previous	
  lecture	
  
•  Parameter estimation 

–  Method of maximum likelihood 
•  Correlation coefficient 
•  Simple Linear Regression 
 

 



DATA GENERATION 
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Necessity :  

 

1.    

 

 

3.  Use of historical record alone gives no idea of the 
risks involved. 

4.  Exact pattern of flows during the historical period is 
extremely unlikely to recur during the economic life of 
the system. 

Length of historical record 

Economic life of the project 
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Data Generation 



•  Motivation for the Generating Models :  

•  Statistical Regularity of Flows : 

Mean Flow 

Time 

Flow 

Unless drastic changes in 
the basin occur, flow tend to 
maintain their statistical 
distributions over a long 
period of time. 

t 

Unlikely 

History provides a valuable clue to the future 
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Data Generation 



•  Persistence 

 Tendency of the flows to follow the trend of immediate past. 

 [Low flows follow low flows and high flows follow high flows]. 
 

Generating Models: Reproduce the statistical distributions and 
persistence of historical flows 

Important statistics normally preserved by generating models :  

•  Mean ………………………. Average flow 

•  Std. Deviation……………… Variability of flows 

•  Correlation Coefficient……. Dependence on previous flows and/ 
or other hydrologic variables (Rainfall) 
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Data Generation 



Data Generation 

•  Given a distribution, to generate data belonging to that 
distribution 
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Randomly picked up 
values of F(y) follow a 
uniform distribution u(0, 1) 

u	
  	
  

f(u)	
  	
  

0	
  	
   1	
  	
  

Choose a random F(y) from 
uniform distribution, get 
corresponding y. 

y	
  

F(y)	
  	
  



Data Generation 

 
 
 
 
 
Ru: uniformly distributed random no.s in the interval (0,1) 
 
Most scientific programs have built-in functions for 
generating uniformly distributed random numbers.    
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Data Generation 

An algorithm for random number (Ru) generation: 
Xi=(a+bXi-1) Modulo M 
{Xi/M} are the required random numbers 
 
e.g., M = 10, a = 5, b = 3 
Let X0 = 2, then X1 = (3*2+5) Modulo 10 
                               = 11 Modulo 10 
                               = 1 
X1 = (3*1+5) Modulo 10 
     = 8 Modulo 10 
     = 8 
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m Modulo n  = 
  Remainder of (m/n)	
  



Data Generation 

X2 = (3*8+5) Modulo 10 
     = 29 Modulo 10 
     = 9 
 
The random numbers are 
 
•  Pseudo random numbers 
•  If M is large, then the repetition of numbers occur 

after a large set is generated. 
 
 

10	
  

2 1 8 9 2, ; ; ; ..........
10 10 10 10 10

X3 = (3*9+5) Modulo 10 
     = 32 Modulo 10 
     = 2 



Data Generation 

Exponential distribution: 
   f(y) = λ e-λy            λ > 0 
 

   F(y) = 1 – e-λy 
 

   Ru
’  = 1 – e-λy 

 

   1 – Ru
’  = e-λy 

 

        Ru  = e-λy 
 

     ln Ru  = - λ y 
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ln uRy
λ

= −



Generate 10 values from exponential distribution with λ = 5 
 
 

Example-1 
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S.No. Ru y 
1 0.026 0.729932 
2 0.85 0.032504 
3 0.654 0.08493 
4 0.805 0.043383 
5 0.205 0.316949 
6 0.957 0.00879 
7 0.035 0.670481 
8 0.285 0.251053 
9 0.996 0.000802 

10 0.549 0.119931 
Σ 2.258755 

ln

2.26 0.226
10
1ˆ

1
0.226
4.43

uRy

y

y

λ

λ

= −

= =

=

=

=

… generated 
values	
  



Data Generation 

•  Analytic inverse transform not possible for some 
distributions (eg., Normal distribution, Gamma 
distribution) 

•  Numerically generated tables of standard normal 
deviates (RN) available 

•  Given RN, data is generated by 
          y = σRN+ µ 

•  Most scientific programs have built-in functions to 
generate standard normal deviates (RN) .  
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Generate 10 values from N(10, 152) 
 
 

Example-2 
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2

ˆ 14.869
ˆ 191.65
ˆ 13.8

yµ

σ

σ

= =

=

=

S.No. RN y 
1 0.335 15.025 
2 -0.051 9.235 
3 1.226 28.39 
4 -0.642 0.37 
5 0.377 15.655 
6 2.156 42.34 
7 0.667 20.005 
8 -1.171 -7.565 
9 0.28 14.2 

10 0.069 11.035 
  Σ 148.69 

y = σRN+ µ 
 
y = 15 RN +10	
  

RN obtained from: Statistical methods in Hydrology by C.T.Haan Iowa State University Press 
1994 Table No.-E.11	
  



Data Generation 

Gamma Distribution: 
 
                                            
  
                                            
                                      
                                    
 
e.g., η = 2 
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Gamma variate with integer values of η can be shown to be the sum of 
η exponential variates each with parameter λ)	
  

(for integer values of η)	
  



Generate 10 values for η = 2 and λ = 3 
 
 

Example-3 
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S.No. y  

1 0.376 0.005 2.092 
2 0.077 0.959 0.869 
3 0.323 0.216 0.888 
4 0.773 0.544 0.289 
5 0.24 0.073 1.348 
6 0.597 0.631 0.325 
7 0.879 0.614 0.206 
8 0.942 0.563 0.211 
9 0.213 0.48 0.76 

10 0.325 0.112 1.104 
 Σ 8.092 

( )1 2
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TIME SERIES ANALYSIS 
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Time Series Analysis 

•  Sequence of values of a random variable collected over 
time is time series. 

•  Discrete time series: measured at discrete time 
intervals 

•  Continuous time series: recorded continuously with time 
•  Single time series : A realization 
•  Ensemble: collection of all realizations 
      {xt}1, {xt}2……. {xt}m  
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Time Series Analysis 
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t	
  	
  

{xt}1	
  

Realization-1 

t	
  	
  Realization-2 

{xt}2	
  

t	
  	
  

{xt}m	
  

Realization-m 

Ensemble:  
collection of all realizations 
      {xt}1, {xt}2……. {xt}m  



Time Series Analysis 

•  Hydrologic time series composed of deterministic and 
stochastic components 

          
 
 
 
 
 
 
                           Xt =  dt + εt 
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t	
  	
  

xt	
  

Long term mean 



Time Series Analysis 
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t	
  	
  

xt	
  

Stochastic + Trend 

t	
  	
  

xt	
  

Stochastic + Periodic 
t	
  	
  

xt	
  

Stochastic + Jump 

t	
  	
  

xt	
  

Stochastic 

 Xt =  dt + εt	
  



Time Series Analysis 

•  Deterministic component is a combination of a long 
term mean, trend, periodicity and jump. 

•  Time scale of time series – either discrete or continuous 
•  Discrete time scale: observations at specific times 

separated by Δt. (eg., average monthly stream flow, 
annual peak discharge, daily rainfall etc.) 

•  Continuous time scale: data recorded continuously with 
time (eg., turbulence studies, pressure measurements)      
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Time Series Analysis 

•  The pdf of a stochastic process X(t) is f(x; t) 
•  f(x; t) describes the probabilistic behavior of X(t) at 

specified time ‘t’ 
•  The time series is said to be stationary, if the properties 

do not change with time. 
•  f(x; t) = f(x; t+τ) v t 
•  for stationary series, pdf of Xt is same as Xt+ τ 
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Time Series Analysis 

Time average for a realization  
 
 
 
    n is no. of observations 
 
Ensemble average at time t 
 
 
 
   m is no. of realizations 
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Time Series Analysis 

•                 for all values of t and τ, 
then the process is stationary in 
mean (first order stationary) 

•  If all the moments up to order ‘f’ 
are same for time t and t+τ, then 
the time series is weakly 
stationary of order ‘k’ 

        k = 1  Stationary in mean 

        k = 2     
•  For a strictly stationary time 

series,  
        f(x1) = f(x2) = ……… = f(x) 
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t tX X τ+=

mean & covariance are same  

t	
  	
  

{Xt}1	
  

Realization-1 

t	
  	
  
Realization-2 

{Xt}2	
  

t	
  	
  

{Xt}m	
  

Realization-m 

t	
  

t	
  

t	
  

t+τ	
  

t+τ	
  

t+τ	
  

τ	
  



Time Series Analysis 

•  Auto covariance 

•  Auto correlation between Xt and Xt+τ,  
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Time Series Analysis 

•  Auto correlation indicates the memory of a 
stochastic process  
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k	
  	
  

ρk	
  

Correlogram 



Time Series Analysis 

•  Auto covariance matrix 

 

          
 Γn  is symmetric and +ve definite matrix 
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Time Series Analysis 

•  Dividing the matrix by γo, 

      
Ρn is symmetric and +ve definite matrix 
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Time Series Analysis 

•  Because Ρn is +ve definite 
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Time Series Analysis 

•  Sample estimates:  
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Time Series Analysis 

•  Auto correlation function (rk) 

 
If it is purely stochastic (random) series, 
ρk = 0,         v    k = 1, 2, 3,…….. 
rk = may not be zero (because rk is a sample estimate) 
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10,kr Normal Distribution
N
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Time Series Analysis 
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Obtain Auto correlation for k=1 
 
 

Example-4 
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S.No. Xt Xt+1 

1 97 -10.50 110 2.5 -26.25 
2 110 2.50 121 13.5 33.75 
3 121 13.50 117 9.5 128.25 
4 117 9.50 79 -28.5 -270.75 
5 79 -28.50 140 32.5 -926.25 
6 140 32.50 75 -32.5 -1056.25 
7 75 -32.50 127 19.5 -633.75 
8 127 19.50 90 -17.5 -341.25 
9 90 -17.50 119 11.5 -201.25 

10 119 11.50 
Σ 1075   -3293.75 

( )tx x− ( )1tx x+ −
( )
( )1

t

t

x x
x x+
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Example-4 (contd.) 
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mean      = 1075/10 
               = 107.5  
 
 
Variance, 
 
 

x

( )2
1

0
4132.5 459.2

1 10 1

n

t
t
x x

c
n

=

−
= = =

− −

∑

( )( )
1

1
1

1
3293.75 329.375
10

n

t t
t
x x x x

c
n

−

+
=

− −
= = =
∑

1
1

0

329.375 0.72
459.2

cr
c

= = =



Purely stochastic process 
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DATA EXTENSION & 
FORECASTING 
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Data Extension & Forecasting 

e.g., Stream flow records for reservoir planning 
 
 
 
 

Data forecasting 
 
 
 
 
 
                                            + Random component 
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1970 2010 2040 

Available 
data 

Extension of 
data 

We are 
here 

Inflow, It+1 
(Forecast) 

Time, t Time, t+1 

Inflow, It 
(known) 
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Data Extension & Forecasting 

 
 
 
Use first ‘T’ values to build the model, use rest of data to 

validate it 
FT+1 FT+2 ……… FN forecasts obtained from the model 
 
(XT+1 – FT+1) 
(XT+2 – FT+2) 
. 
. 
(XN – FN) 
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X1 

Calibration data Test data 

XT XN XT-2 XT-1 XT+1 

Forecast errors 	
  



Data Extension & Forecasting 

Method of simple averages: take the average of all the 
data in the calibration data as the forecast for period (T+1) 
 
 
 
 
 
 
For jumps, trends this is not a good procedure 
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and so on	
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Example-6 
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Data Forecast 
105 - 

115 

103 

108 

120 

97 

110 

121 

117 

79 

110 

107.67 

107.75 

110.2 
108 

108.28 

109.87 

110.67 

107.5 



Smoothening technique: 
Moving Average (MA) 
 
 
 
• As new observation is available, new average is 
computed by dropping the oldest observation and 
including the newest one. 
• No. of data points in each average remains constant 
• Deals with the latest ‘T’ periods of known data 

Data Extension & Forecasting 
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T+1 T 

T T+2 



Example-7 
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Data MA (3) MA (3, 3) 
105 - 

115 - 

103 - 

108 

120 

97 

110 

121 

117 

79 

107.67 

108.67 

110.33 

108.33 
109 

109.33 

116 

108.89 

109.11 
109.22 

108.89 

111.44 




